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Abstract

Most of the recently developed methods for predicting instabilities of frictional systems
couple stochastic algorithms with the finite element method (FEM). They use random
variables to model the uncertainty of input parameters through standard probability
laws. Regardless of the fact that advanced numerical schemes are available nowadays, a
systematic and accurate method to describe finely the uncertainties upstream the
model, and thus predict its response is still missing. In this contribution, we present a
data-driven stochastic finite element scheme to predict the dynamic behavior of a
rubbing system. The proposed framework relies on data-driven approach and uses four
steps. In the first, the measured data are integrated directly, for the uncertainty
quantification, by means of the random balance design (RBD). In the second step, the
generated stochastic data are evaluated in an iterative way to solve friction-induced
vibration problem. In the third step, the resulted data are reordered in such a way that
the corresponding values of each measured input parameters are ranked in ascending
order. Finally, the Fourier spectrum is introduced on the reordered results to compute
the sensitivity indices. Thus, instead of Monte Carlo-based formalism or Fourier
Amplitude Sensitivity Test (FAST), the computational cost of the proposed method is
kept down to O(N) with N the number of samples. We investigate the efficiency of the
suggested solver on a reduced brake system. Altogether, the suggested procedure
achieves excellent accuracy at a much reduced computational time compared to the

methods available in the literature.

Introduction

The study and prediction of instabilities in frictional systems remain, to this day, an impor-
tant and open issues in both academic and industrial research. Over the last decades,
there have been many formulated theories [1-8], experimental investigations [9—15] and
advanced models [16—21] with the aim of understanding the physics of the squeal phe-
nomenon. In spite of this, friction-induced vibrations remains one the unresolved engi-
neering problems where the consistency between predictions and experiments is often
questioned.
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Traditionally, the modelling and prediction of the squeal phenomena are carried out
using deterministic solvers by means of the finite element method (FEM). Among the
intense debates concerning the appropriate deterministic method for predicting friction-
induced vibrations, there is the one that evokes the comparison between (i) the direct
transient analysis (DTA) and (ii) the complex eigenvalues analysis (CEA) [20,22-24]. It
turns out that the two solvers, in a deterministic context, do not reproduce the squeal
frequency observed experimentally [12]. The DTA method is more precise compared
to the CEA. Indeed, the latter may lead to an underestimation or an over-estimation of
the unstable modes observed in the nonlinear time simulation due to the fact that linear
conditions (i.e. the linearized stability around an initial equilibrium point) are not valid
during transient or self-excited oscillations [25]. On the other hand, CEA offers a good
compromise between computational cost and accuracy. As a result, it is the most widely
used in the industrial sector. To overcome the CPU cost of transient methods, authors have
developed alternative deterministic approaches. For instance, Coudeyras et al. [26,27]
have proposed the Generalized Constrained Harmonic Balance Method (GCHBM) to
compute nonlinear or pseudo-periodic responses of the frictional system. Charroyer et
al. [28,29] have combined the CEA with the shouting method to solve friction-induced
vibrations. It should be noted that the aforementioned methods reproduce results of the
DTA in a very reasonable computation time [26—29]. In parallel to this relevant studies,
authors have show, in the most recent contributions, that the deterministic approach is
not sufficient to predict instabilities because a frictional system (e.g. braking system) is
subject to several sources of uncertainty [30-33]. Indeed, CEA or DTA, in a deterministic
mode, represents only one case of reality. They neglect various uncertainties linked to
manufacturing errors, rubbing contact, test conditions, etc. Naturally, these scientific
challenges gave rise to the stochastic finite element method (SFEM), which attempts
to couple the stochastic algorithm with FEM. The main challenge of these methods is
to (i) model and (ii) propagate uncertainties upstream of the model, then to (iii) predict,
using a probabilistic approach, dynamic instabilities. Among the various existing methods
for quantifying uncertainty is the traditional Monte Carlo (MC) method, introduced by
Culla et al. [19], to predic the instabilities. It was shown that MC-FE can improve the
correlation between the prediction and the experiment [19,34,35]. In our previous work
[36], we investigated the convergence of MC-FE solver by adding the classic variance-
based sensitivity analysis (VBSA): it was shown that this method has a slow convergence
rate. Hence, it is not efficient for this type of problem. In the same paper, the coupling
between Fourier amplitude Sensitivity Test (FAST) algorithm with FEM demonstrated
good convergence properties [36]. The polynomial chaos (PC) theory, originally developed
by Ghanem et al. [37], is another popular class of methods to represent uncertainty with
ambiguous information. Sarrouy et al. [38] and Nechak et al. [39] introduced both PC
expansion and multi-element generalised polynomial chaos (MEgPC) to solve the stability
of friction-induced vibrations. In the same context of the meta-modelling of instabilities,
Denimal et al. [40] and Nechak et al. [41] applied the kriging method and coupled it with
VBSA in Sobol’s sense. In the aforementioned advanced methods, authors mainly use
the friction coefficient, the penalty coefficient of the contact interfaces and all material
properties as random variables. Investigations have shown that the frictional contact
parameters (i.e. friction coefficient and penalty coefficient) as well as the pad stiffness
are the most sensitive predictors of instabilities [36,42]. These results thus demonstrate
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the complex and mutliphysical side of friction-induced vibrations. Consequently, the
uncertainty quantification of the previous dominant parameters should be taken into
account for a robust prediction of the instabilities.

In this light, the direct stochastic simulations or meta-modelling techniques of friction-
induced vibrations present a promising alternative to deterministic approaches that are
merely available to handle single type of uncertain case through nominal input parameters.
Usually, random variables are assumed to follow a standard probability density function
(PDF). For instance, Zhang et al. [34] used Cauchy and Beta distributions, constructed
using the parametric estimation, to model the friction coefficient. The consistency of such
a method may be questioned if the size of the experimental sample is not sufficient to
guarantee the convergence of the estimators. Another serious drawback of the stochastic
scheme is the convergence. Indeed, a non-negligible number of stochastic iterations is
required to estimate statistical indicators (e.g. partial variance, moments, etc.). In our
recent study [36], two stochastic solvers are developed: (i) the traditional MC-FE and
(if) FAST-FE. The computational cost for the former solver is N/2 x (k + 2) where N
and k denotes the number of stochastic iteration and the number of random variables,
respectively. With regard to the FAST-FE solver, a minimum of N iterations are needed
to avoid the aliasing effect and interferences between random variables. Note that the
stochastic iterations N depends indirectly on the number of random variables such that
N = 2 x M x max(w;) + 1 where M is the harmonic order and w; is a characteristic
frequency assigned to the i-th random variable. If the uncertainty analysis request several
input parameters, the periodic sampling frequencies w; will be large. As a result, the
model can become computationally prohibitive. For these reasons, stochastic modelling
techniques for instabilities require further adaptation and enhancements to (i) reproduce
and integrate data with unusual statistics (e.g. biased, multi-modal, etc.) and to (ii) optimize
the CPU time for FAST-FE scheme.

To the best of our knowledge, the data-driven approach associated with stochastic finite
element scheme to predict instabilities has so far received few attention. Thus, one of
the objectives of the present contribution is to conduct a FAST-FE based numerical
analysis of a rubbing system, capable of directly integrating the experimental measurement
of the input parameters while ensuring a good convergence rate. The main scientific
contributions of this document are the following:

* Integrating the random balance design (RBD) within FAST-FE solver. Hence, the
inherent criterion for avoiding aliasing effect between random variables is no more
needed;

* Constructing a data-driven random generator based on the RBD approach. The
friction-induced problem is solved directly on a given set of measurement by bypass-
ing the parametric estimation and the traditional PDF fitting;

* Performing an efficient prediction of instabilities within a reasonable computational
cost. The latter is completely dissociated from the number of random variables.

The rest of the paper is organized as follows. In “Data-driven stochastic complex eigen-
value analysis” section, the stochastic framework of the CEA method is formulated involv-
ing 3 modules (i) the stochastic pre-processing (ii) the model evaluation and (iii) the
stochastic post-processing. In “Numerical treatment” section, the solver’s algorithm, illus-
trating the implementation of the data-driven approach to integrate the uncertainties
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upstream of the model and to predict its response, is presented opening the path to inter-
face with an off-the-shelf computational engine (open source or not). The implementation
strategy is then followed by numerical examples in “Numerical analysis of the suggested
solver” section, where the solution of the proposed data-driven framework is compared
to the solution of the methods available in the literature with regards to accuracy and effi-
ciency. In the end, the paper closes with an application of the methodology to an industrial
disc brake system followed by a conclusion and some perspectives.

Data-driven stochastic complex eigenvalue analysis

In this section, we will introduce the stochastic CEA-based framework, developed in this
paper, to predict the dynamic behavior of frictional system. The theoretical formulation
of the proposed strategy will start with the stochastic pre-processing. The latter is devoted
to enhance the periodic random generator of FAST algorithm by introducing the RBD
approach with the possibility of data generation from experimental measurements. After
model evaluation by the traditional CEA solver, the stochastic post-processing module will
be presented to derive an estimate of the variance, the partial variance and the sensitivity

index.

Stochastic pre-processing

Let us consider x = (x1, %, . . ., x,) a vector of n random variables each distributed accord-
ing to a specific PDF f;(x;), i € {1,2,..., n}. The input parameter space, called also the
x-space, can be defined as:

K =f{x=@px..%0) [~ filw), i=12,...,n} (1)

In the version of FAST-FE solver developed in [36,42], the original periodic sampling
approach to simulate the random variable vector x [43—45]. The idea behind it is to carry
out a bijective transformation (see Eq. (5)) between the x-space and the 6-space defined
by:

Ky ={0=(010..,0) | -7 <b<m i=L2...,n} 2)

where 0; is a random variable distributed uniformly between —z and . Therefore, the
generated data are sampled periodically in the 6-space following a particular research
curve function G;j, associated to the i-th random variable, which is the solution of the
following equation,

7V = x%i(Gi(x) LS — 1, Vi e (1,...,n)

1 (3)
Gi(0) =5

Without any loss of generality, let us assume a uniform random variable where its PDF is
equal to 1, the corresponding research curve function, G;, is deducted directly from Eq.
(3). We write:

Gi(x) = % + % arcsin(x). (4)
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Note that the transition between the x-space and 0-space is done periodically as follows,
x; = G;(sin(6;)). (5)

In the general framework where the random variable x; is modelled by its cumulative
distribution function (CDF), F;, the research curve function becomes:

x; = G;(sin(6;)) = Ffl (% + %arcsin(sin(@,))). (6)

Note that in Eq. (6), Fl._1 denotes the inverse cumulative distribution function (ICDF) of
the i-th random variable.

Sampling in #-space, according to the traditional FAST algorithm, makes use of another
bijective transformation, ¢, defined in Eq. (8). Indeed, for each uniform random variable
0;, a unique characteristic frequency w; and grid sample s; are assigned in order to generate
data in 8-space. In other words, the random variable 6; is sampled in another space, called
the grid space K defined by:

i 2
KI == (o528 = £+ =D =m j=(12..,N) )
over N drawn samples.
0; = ¢ (wis;) 8)

Now, since all the transformations are considered, the discretized form of the periodic
sampling approach for a given random variable x; characterized by its CDF is given by:

xy) = Fl._1 (l + l arcsin(sin(wis?)))> , 9)
2w
where j denotes the sample element.

It should be noted that for the traditional FAST algorithm, the characteristic frequency
set {w;}, i = 1,...,n is selected according to a complex algorithm to avoid any kind of
interference or aliasing effect, between the random variables x;, up to a given order M of
harmonics. In this case, the search curve is said to be space-filling. As a result, a criterion
that must be respected is formulated. This restriction takes the form of a lower limit on
the number of samples Ny,i,, for FAST-FE solver, which must be strictly observed. We

write,
Npin = 2M max {w;} + 1. (10)

However, if the dimension of the input parameter space increases, the quantity max {w;}
increases as well. Therefore, the CPU times will be prohibitive.

In this context, we introduce the RBD approach within FAST-FE solver. Following this
approach, all the random variables will be sampled with the same characteristic frequency
. Without any loss of generality, let us assume that @ = 1 for all random variables.
Equation (9) can be rewritten as,

. 1 1 0
£ — 1 (5 + — arcsin(sin(sﬂ’ ))), (11)

l i T i
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with 8; denotes a random permutation of the set {1, 2, - - -, N'}. Hence, sf "readsasarandom
permutation of the auxiliary variable s; assigned to the random variable x;. Hereafter, if not
mentioned differently, the auxiliary variable vector s = (sy,...,Ss; ...,S,) is constructed

from a “new” grid space,
" () 2 . ;
K ={s=(s1,52...,80) | ; =so+ﬁ(j—l)—n,]:(l,Z,...,N)}, (12)

where s is a uniform random variable drawn from [0, 37]. We write so = U(0, %;).

Following the logic of the grid space K in Eq. (12), it can be seen that N points can
be drawn over a subspace of K defined only by ZW”  — 1) — 7 (i.e. the second part of
the j-sample s?)) which is quite equivalent to the first definition of the grid space in Eq.
(7). According to this, one can observe that the second part of j-sample in Eq. (12) and
also the j-sample in Eq. (7) will always return the same point in K7. To overcome this
drawback and thus, make the random generator more efficient, an independent uniform
variable s is added in the new formulation of K. Thereupon, the N starting points
will be everywhere within K, exactly like the traditional sampling of the so-called Latin
Hypercube Sampling.

Since the same frequency is used in the RBD approach (see Eq. (11)), a serious issue
may arise. The latter concerns the “space-filling” condition of the research curve. In
other words, the constructed random generator in Eq. (11) will cover only a subspace of
the whole x-space K, which can induce a bias in the estimates of stochastic indicators
(especially the partial variances). To avoid this kind of problem, Tarantola et al’s imple-
mentation will be used to trace the signature of each random variable after being evaluated
by the deterministic FEM [46]. Therefore, instead of using the periodicity of the model

output, combined with the different frequencies w;, to track the influence of the variable
)
x; at w;, random permutations sf" of the grid space K will be performed to generate a

set of scramble points that cover the whole input space K?. Thus, the influence of the
parameter x; on the model output will be completed by an equivalent permutation to that
of grid space. More details are discussed in “Stochastic post-processing” section.

Following the proposed pre-processing module, a question naturally arises: “How can
the uncertainties observed experimentally be integrated efficiently into modelling tech-
niques?” One intuitive approach often used in literature is the parametric estimation
wherein the probability law is assumed to have a particular shape (e.g. Gaussian distri-
bution). In this case, it is sufficient to estimate a few parameters (mean and variance)
to describe it completely. On the other hand, information about the probability law is
very limited without saying that it is almost non-existent. In very specific conditions, the
available data that characterize random variables involves a non usual behavior (e.g. multi-
modal behavior). Therefore, the parametric estimation using the usual PDF (or CDF) will
fail to capture the physics. With Eq. (11) in hand and following the algorithm 1, the ran-
dom data can be generated and thus integrated, in modeling processes, from raw sets that
do not necessarily follow a known analytical distribution.

Model evaluation: atability analysis—deterministic FEM

The output of the pre-processing module presented in “Stochastic pre-processing” section
is a design of experiments (DOE). It represents N random generated data directly from
the measurement raw sets or from the usual probability laws. For each drawn j-realization
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{x] ,xg), .. ,xn)} with j € {1,2,..., N}, the problem becomes deterministic. Then, the

traditional stability analysis (CEA) is performed. The goal is to predict unstable modes by
solving the following equation of motions:

M (e) + COi(e) + KOuD(t) + FI (1)) = Fexe (), (13)

where 49 (¢) denotes the displacement vector associated with the stochastic iteration j, the
dot refers to its derivative with respect to time. M 0, ¢ and KV are the mass, damping
and stiffness matrices constructed for the stochastic iteration j, respectively. ng describes
the non linear normal and tangential contact forces. Finally, Foxt is the external load.

Under the framework of FEM, the resolution of Eq. (13) is done through 2 levels. First
and under the quasi-static assumption, the following equation,

K4 + FNud)) = Fext, (14)

is solved in order to find the equilibrium position, noted by u(’) leading to an homogeneous

linear system in Eq. (15), where K|;j is the so called Jacobian matrix of the non linear

contact forces at the equilibrium state ug ) Notice that the global stiffness matrix, Kasy,

in Eq. (15) is asymmetrized by the contribution of the frictional contact. In this case, it is
recommended to use the non-symmetric solver to ensure the convergence.

Dild (1) + CO(e) + (K9 + KA @) ue) = 0 (15)

—_—

)
Kasy

Second, the deterministic CEA solves Eq. (16), obtained after modal reductlon, to provide
alocal stablllty analy51s which is quantified by the Laplace parameter p 8 ) and the complex

eigenvector ¢k for each mode k. Furthermore, the dynamic behavior of the frictional
system becomes unstable around the equilibrium state ug ), if and only if at least one
Laplace parameter has a strictly positive real part Ol]((]). In this case, the friction-induced

vibration instability occurs and is quantified by two quantities: (i) its eigenpulse “’l(<]) which

corresponds to the imaginary part of Laplace parameter p(l)

instabilities a,(f).

and (ii) its magnitude of the

(P M+ piCh) + K ) ¥ = 0 (16)

It should be noted that, for the instability quantification in braking system, authors in
[9,47] use another criterion, known as the tendency of instability (TOI), which may be
expressed under the j stochastic iteration as follows:
()
0 — § %
TOIY =)~ 5 % 1000, Vay > 0. (17)
k @

The TOI index is strongly correlated with the negative damping of the frictional system.
Therefore, an unstable system will have a significantly higher index, implying a negative
damping below zero. This explains the dynamic instability and the self-excited character,
leading to a divergence of the equilibrium state.
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Stochastic post-processing
After the model evaluation, a N X m size set of Laplace parameter p is computed, where N
and m denotes the number of stochastic iterations and the number of the complex modes,
respectively.

Without any loss of generality, let us consider Laplace parameter py for a specific mode
k. Then, we write the model output as follows,

e =FEMGY, &0, 20, 40, vie(n2 . N (18)

14
Eq. (18) can be read as an evaluation of the generated DOE, {xY), xg ), ey xg)}, through the
deterministic CEA.

Due to the RBD approach (see “Stochastic pre-processing” section), the model output
pr must be reordered in such a way that the realizations of the random variable x; are
ranked in an increasing order. In other words, Laplace parameter for the mode k should
be rewritten respecting the same order as the auxiliary variable s; (assigned to the random
variable x;) defined in the grid space K/ in Eq. (12) before the so-called permutation g;.
According to the inverse permutation §;” ! the generated data as well as the model output
Pk can be reordered by solving the following problem:

find B!

Xi

19 11 op 10
such as xf‘ = Fk_1 <— + — arcsin(sin(sfk hi ))) Lk=1...,n
2 7

, 10 j ifk =i )
with Bk o B; = 0 j=L1,..,N
,Bk o lBi lfk ;é i,

It is important to note that B o ,3;1(/) is a non-trivial permutation involving the random
variable vector x except ;. In the following, the reordered Laplace parameter will be
noted by p,’fil, with B~ refers to the inverse permutation of the permutation vector
B= (,31: SERP] ,Bn)

Since the periodic research curve is introduced to generate random data, both Laplace
parameter p; and the reordered Laplace parameter pf - for each mode k are forced to be
a multiple periodic function over the vector 6 = (6, .. ., 8). Therefore, the FE model can
be expanded into Fourier series as follows,

+00

-1 5
AR M 1

Yoo Yn=—00

where the operator N(.) refers to the real part of Laplace parameter py, j denotes the
imaginary unit and C}(f(i,)...,yn is the complex Fourier coefficient. We have,

1 n T b4 .
¥ = (—) / f FEM o G(0, . .., 0,)e 00+-4%0) g, dg,. (20)
e 27 - -1

Note, in Eq. (20), the function G denotes the search curve defined in Eq. (4). It is also
important to note that the same research curve is used to sample all the random variable

Xi.

Page 8 of 30
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From Eq. (20), Fourier spectrum can be derived. Namely

2
Ay =€), (21)
It should be pointed out that the Fourier spectrum Ay is evaluated at (yy, . . ., v,). The latter
may contain the fundamental characteristic frequency w and its harmonics up to order
M. In this contribution, the fundamental frequency w is kept at 1. However, the choice of
the harmonic order M will be investigated in “Numerical analysis of the suggested solver”
section.

Throughout Egs. (20) and (21), some interesting stochastic quantities can be computed;
(i) the variance of the model V' and (ii) the partial variances V, for each random variable
x;. Recall that the latter aims to identify the effect of the input parameters on the predicted
instabilities. Subsequently, we write,

+00

VO, D= Y M) (22)
V1] lynl=1
and
. = “+o00
Ve, ) = VEDRE, )= Y. A0...,0,%0,...,0). (23)

lyil=1

Thus, the sensitivity index for the random variable x; can be deduced directly using Eqgs.
(22) and (23), we write:

VOl )

DL ) = oo
. k

(24)

Based on Eq. (24), the random variable x; with a high sensitivity index leads to a greater
variance in the expected value of iﬁ(pf 71) given x;. Thus, it indicates that a relatively
large proportion of the so-called dynamic instability variance is contributed mainly by
the random variable x;. Knowing this information, one can (i) reduce or even eliminate
the instabilities of the system and (ii) optimize the design chain of the frictional system
by reducing the number of input parameters. In the following, we present a numerical
treatment of the suggested data-driven approach to compute the quantities in Egs. (22),
(23) and (24).

Numerical treatment
In sum, the following set of equations has to be solved for Laplace parameter p:
x=F"1 (% + %arcsin(sin(sﬂ))) Vx e Kf, Vs € KY
(P*M(x) + pC(x) + Kasy(®)) ¢ =0 VpeC” (25)

D@@»:ﬁ&%
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with x is a random variable vector. It may contain the distribution of Young’s modulus,
the friction coefficients or the mass density following a given CDF vector F. The mass M,
damping C and stiffness K matrices depend on the random variable vector x. The above
matrices are of dimension m by m. Finally, a design mapping D, such as the introduced
in [36], which involves the sensitivity indices defined above is used to synthesize the most
probable unstable mode and visualize the effect of the random variable vector on the
dynamic instability for each mode k in {1, . .., m}.

Pre-processing procedure

The preprocessing procedure proposed in this paper can simulate any given probability
distribution. If the latter is usual (e.g. Gaussian), Eq. (11) can be used to generate the
random variates. In the opposite case where the probability law is unknown, one can use
directly a raw data set to derive the random generator. This implies that the suggested
approach should adapt to the acquired information. To do so, a suitable algorithm 1 is
proposed and contains 3 main steps:

1. CDF estimation F;: Let {xl.l, xl.z, .. .,xlNe} represent N, observations of the random
variable x;. The correspondent empirical distribution function (EDF) estimation, F;,
can be computed as follows,

N

Pi(t) = ]\i[e ]Xl: lx/l:<t Ne—>—+oo> F;. (26)
Note that as long as N, tends towards 400, the EDF converges to the CDF almost
surely whatever the value of ¢ (strong law of large numbers statement).

2. ICDF estimation Fi_lz Eq. (26) provides an non-derivable piecewise constant func-
tion. Instead of working on the latter, Newton’s scheme will be applied directly on
a selection of the computed EDF points by ensuring their uniqueness. It should be
noted that the convergence of the algorithm 1 is quadratic as long as the initial guess
Xy is near the solution.

3. Construction of the random generator: Knowing the ICDF derived from raw data, the
random generator will be constructed using Eq. (11). Again, the grid space should be
sampled through the definition in Eq. (12) followed by a random permutation 8 to
cover the whole input parameter space K7. In the following, the permutation of the
vector grid sample s is denoted by s?.
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Algorithm 1: Pre-processing module - Data driven random generator

Data: N, measured data {xil, xiz, ces xﬁ\[e} for the random variable x;, Precision &/,
Number of maximum iterations kmax, Iteration step dX
Result: j-drawn of the random variable x;, the random permutation s;
/* Experimental Distribution Function estimation */
1: {xfl), x;z)} ety xENE)} <— Sort {xil, xiz, e xlNe} in ascending order;
2 Flk] «— Compute the EDF using Eq. (26);
3: (x;, F) <— Select the unique value (x;[k], F[k]) of the EDF;
/* Inverse Cumulative Distribution Function estimation */
4 :Y <— Generate linearly spaced / points between 0 and 1;
5: X <— Generate linearly spaced / points between min and max raw data sets;
for each selected point k of F k<ldo
6: Xy «— X(k);
7: Yy «— Y(k);
8:¢ «— F(Xo) — Yo;
9:pe <—¢;
10 : count <— 0;
while | ¢ |> ¢/ do
11 : count+ <«— 1;
if count == kyax then
‘ 12 : exit—no convergence;
else
if pe x ¢ < 0 then
‘ 13 : dX <— Adjust the iteration step;
end
end
14 : pe <— ¢;
15: Xo «<— Xo — sign(e) * dX;
16 : & «— F(Xo) — Yo;
end
17 : F71(k) «— Xo;

end

/* Construct the data-driven random generator */
18 :s; «— Sample the grid space in Eq. (12) over N points;
19 : B; «<— Perform a random permutation on {1,2, ..., N};

20 : sf * «— Construct the permuted auxiliary variable s;;
. ()
21 :xl(.’) «— FL._1 (% + 4 arcsin(sin(sf" )));

b/

Post-processing procedure

N realizations are generated through algorithm 1 accompanied with their random permu-
tation S. Note that the latter denotes a vector of random permutations associated to the
random variable vector. For each realization j of the random variable vector, the problem
becomes deterministic. This leads to a traditional resolution by CEA through FEM in order

to find the Laplace parameter for each mode. Upon solving the deterministic problem in

Page 11 of 30
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Eq. (13) on the whole statistical population, the associated random complex eigenvalues
are collected. From this point, one can compute the so-called stochastic moments using
the classic estimators. In this paper, the most-likely unstable modes are computed using
a probabilistic approach. Once done, the desired sensitivity information is deducted from
the Fourier spectrum in Eq. (21). The computation of Fourier’s spectrum is obtained by
switching to the grid space K through Eq. (8), thus the FE model can be expanded again
over the auxiliary variable.

B +o00 o1
R(pr) = FEM 0 G (@1s), ..., S(ns) = 3 € ), 27)
l=—00
with,
-1 1 T .
V= = | oo as. 28)
2 J_»

It should be noticed that, in the RBD framework, the frequencies w; are kept to 1 as
mentioned above. It is also important to notice, that the post-processing over the auxiliary
variable should be done on the reordered model output. Thus, it is convenient to recover
the inverse permutation g~ 1.
By using the rectangle rule with a rectangle width of ZW” Equation (28) can be discretized
as follows,
Sﬁ_l) T

1 .
c )= o | Nee " ds
-1

1 XN 0 0 (29)
~ o > 9%ip!)e D,
j=1

Following that, the variance of the model can be computed as,

N/2

o)) = Y1 P (30)

l1]=1

and the partial variances can be estimated as,

R M !
Ve @) = > 1C ) (31)
|l|=1

Recall that M is the harmonics order. A detailed study is devoted to this subject in “Effect
of the harmonic order M” section to comment on the relevant choice of its value.

As long as the periodic function FEM o G is twice continuously differentiable, the error
of the rectangle rule decays as the square of rectangle width. According to Davis and

-1
Rabinowitz [48], the numerical error of Fourier coefficient, Clsﬁ , reads

73 92FEM o G
(5)

£, < —= max
! 3N?2 s€[—m,m] ds2
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Another interesting point is that the characteristic frequencies have been reduced to 1.
This choice as well as the use of random permutations, allowed to ease the restrictions on
the number of stochastic iterations. However, due to the so-called inverse permutation,

peop ) Vki={1,...,n)

-1

Fourier coefficient Cl(sﬁi ) related to the random variable x; may contain two contributions;
(i) the partial variance V,, related to x; and (ii) a portion of the partial variance V., for
all random variables except x; (see AAppendix for more details). In other words, Eq. (31)
may incorporate interference between the last partial variances, which may lead to an
overestimation of the true value of the partial variances contributed by the main effect.
The quantification of the last overestimation is provided in Appendix where the quality
of Fourier spectrum estimation is evaluated. It has been found that the latter is biased. In
fact, the residual contributed by the inverse permutation of all random variables except
x; induces a bias of order LN Hence, besides the error of the rectangle rules, the bias
has to be handled. Furthermore, an accurate estimation of Fourier spectrum and thus
the sensitivity index requires a high number of the stochastic iteration N. On the other
hand, a high number of samples is subjected to an intensive CPU time. A compromise has
therefore to be found between the accuracy and the computational cost.

Using the result of Appendix , see Eq. (59), we arrive at the estimation of the partial
variance:

\ Ve,
in ~ vxi + N

) (33)

where V,, denotes the theoretical partial variance related to the main effect. \A/le. repre-
sents the residual partial variance from the all variable expect x;. It should be noted that
if the number of stochastic iterations is small, the bias becomes important and hence,
the computed partial variances or sensitivity indices will be under or over estimated. In
the spirit of minimizing the error made by the bias (as shown in Eq. (33)) a correction
is introduced, inspired from the work of [49], on the estimated partial variance in. The
former reads:

-y
Vi = ——r (34)
1-%

where V,, is the classic partial variance, V' is the estimated variance, M is the harmonics
order and N is the number of the stochastic iterations. Note that the introduced correction
is activated only if the number of stochastic iterations is low. If not, for a large population
size, it is clear that the corrected estimator tends towards the classical estimate V.

To illustrate the coupling between RBD, FAST and FEM (rFAST-FE), a post-processing
procedure is provided below. Notice that the algorithm 2 gives an implementation of the
sensitivity index associated to the random variable x;. The design mapping proposed in
[36] can be computed by applying the algorithm 2 simultaneously to each element of the

random variable vector.
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Algorithm 2: Post-processing module - Design mapping estimation

Data: The most likely-unstable mode F, the permutated auxiliary variable vector s#,
the harmonic order M

Result: The corrected design mapping DSI' FAST-FEM fo; the random variable X

for each unstable mode k in F do

/* Reorder the model output */

1 : Find the inverse permutation §;" ! using the bucket sort algorithm;

2: Eﬂ(pf" 1) <— Reorder the model output {ETt(p}(), E}i(plz(), oo t)'f(p]kv )} by respecting
the inverse permutation ,Bfl;

/* Compute the effect of x; on the dynamic instability */
3 : Construct the Fourier bases;

4 : Project the reordered output model on the constructed Fourier bases;

5 : Compute the Fourier spectrum of the reordered real part of Laplace parameter

-1
Rp' )

N 1. .
M) — | Yo Ve
j=1

2

’

6 : Compute the sensitivity index associated to the random variable x;:
M

Ar(l)
DIFAST-FEM =1

N )
> A
=1

/* Sensitivity index correction */

7 : Compute the corrected sensitivity index associated to the random variable x;:
prFAST-FEM _ 2

2M ’
1-F

DCIFAST-FEM

end

Numerical analysis of the suggested solver

This section is devoted to illustrate the performances of the rFAST-FE solver through a
reduced brake model. First, the uncertainty arising from the tribological aspect involv-
ing the friction coefficient is analyzed. Here, authors critically examine the so-called
Kolmogorov—Smirnov test procedure combined with the parametric estimation. The
results of the latter are compared with the data-driven approach proposed in this paper.
Second, the convergence rate of the rFAST-FE solver is confronted to that of the MC-FE
and FAST-FE developed in [36]. Finally, an adjustment of the proposed solver, through
the order of the harmonics M and a less biased sensitivity index estimation, is discussed
allowing to find a good trade-off between the computational cost and the prediction

accuracy.

Data-driven random generator validation

It was argued in [18,31,50] that the uncertainties play a major role on the prediction of
the instabilities. These results led researchers to use random variables to model material
properties, friction coefficient and contact interfaces. The methods proposed by Zhang et
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al. [18] and Chevillot et al. [50] use the so-called “two-sample Kolmogorov-Smirnov” test
and the parametric estimation to model the random variables’ PDF. The former quantifies
the distance between the EDF of the measured data and the reference CDF, while the
latter assumes the shape of the PDF and then, estimates its statistics (e.g. the mean and
the variance). Sometimes the above methods are combined. In this case, the “two-sample
Kolmogorov-Smirnov” test used to estimate the shape of the probability distribution and
the parametric estimation computes its parameters. With no doubt, the aforementioned
methods give good approximations of the first two statistical moments, but what about the
shape of the distribution which is, in advance, an unknown of the problem? What about
the efficiency of the constructed random generator? Will the latter be able to reproduce
the statistical behavior of the measured population and thus, integrate in a reliable manner
the generated data into the SFE simulations?

To address the above questions, a brake-dyno measured friction coefficient data set
is used, with a similar procedure and experimental setup to those used by Zhang et al.
[18]. The measured results are separated into cold and hot sections depending on the
temperature condition. The goal of this section is to compare Zhang et al. [18] approach
with the data-driven scheme coupled with RBD (see “Stochastic pre-processing” section).

The statistical behavior of the friction coefficient measured in hot and cold conditions
is described through the PDF, as shown in Fig. 1 where the histogram, representation of
test data, is compared with the suggested approach (black curves) and the so-called “two-
sample Kolmogorov—Smirnov” combined with the parametric estimation (red curves).
Indeed, from the experimental data two quantities have been calculated: the EDF and the
histogram. The EDF approximates the CDF while the histogram approximates the PDF.
The classical approach of modelling uncertainties are successfully applied on the raw
measurement data through the computed histogram. The results in Fig. 1 show that the
Gamma and the Generalized Extreme Value (GEV) distribution functions represent an
acceptable approximation for the friction coefficient of the cold and hot section, respec-
tively. Note that the probability laws mentioned above are adjusted in order to reproduce
the histogram. As presented in algorithm 1, the proposed approach considers only the
computed EDF. By inverting the latter, while avoiding the singularities that could occur,
the RBD-Data-driven random generator was built by explicitly integrating the statistical
behavior of the measured data. Once the random generator is constructed, 1000 realiza-
tions, for the hot and the cold section, were sampled. Here, the goal is to reconstruct the
PDF (black curve) and compare it with the histogram and the analytical PDFs determined
by the parametric estimation method. From Fig.1, one can observe that the fit-based
solution using Gamma and GEV PDFs does not agree with the reference (the histogram).
For the friction coefficient of the cold section, the histogram is nearly approximated
using Gamma PDF, but the latter fails to capture the histogram peak. Another interesting
point, observed on the friction coefficient of the hot section, is that its statistic behavior
involves clearly a bi-modal distribution which is a non-usual one. Hence, it seems that this
non-conventional behavior tends to confirm that the consideration of the so-called usual
probabilistic laws are not efficient to model the observed uncertainties since the shape of
the histogram is missed using the adjusted GEV PDEF. As far as the proposed approach
is concerned, it is clear that it performs better than its counterpart. The RBD-DD-based
estimations in Fig. 1a and b look qualitatively the same as the computed histograms.
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(a) Friction coefficient for the cold sec-tion. (b) Friction coefficient for the hot sec-tion.

Fig. 1 Statistic behavior of the friction coefficient for the cold and hot sections. Comparison between the
experiment through the histogram (reference), Kolmogorov-Smirnov test combined with the parametric
estimation and the data-driven approach combined with RBD

In order to corroborate the results and the above discussion drawn from Fig. 1, 4 statisti-
cal indicators will be evaluated, namely the mean, the standard deviation, the skewness and
the kurtosis. Hereafter, if not mentioned differently, the 4 indicators will be derived directly
from the analytical PDF for the parametric estimation approach, from the reconstructed
PDF for our approach (i.e. RBD-DD) and directly from the experimental measurements
using the unbiased estimators. They can be written as,

g pj

X = ﬁ Z i’ (35)
j=1
1 N

52 = m lzzl(ﬁ({ - Wl)z; (36)

N-1 j=1

K= NN (N +1) —3N-1)|+3 (38)

where &, s, u3 et k¥ denote the unbiased mean, standard deviation, skewness and kurtosis.
xé is the j-drawn element of the random variable x; and N refers to the size of the statistic
population. Note that the unbiased estimators of the measure defined above are consid-
ered as a reference. In what follows, they will be compared to those derived from (i) the
parametric estimation and (ii) the RBD-DD approach.

The finding of the comparative results in Figs.2 and 3 calls for several remarks and
observations. First of all, let us note the similarity in the estimation of the mean and
the standard deviation by the RBD-DD approach and that of the parametric estimation
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Fig.2 The first four statistic moments for the friction coefficient of the cold section: a mean value, b standard
deviation, ¢ skewness and d kurtosis. The four statistic indicators are computed directly from (i) the measured
data using Egs. (35), (36), (37) and (38) (the reference solution), (i) the parametric estimation using the fitted
Gamma PDF and (jii) the reconstructed PDF based on the RBD-DD random generator

(see Figs.2a, b, 3a and b): this first observation can be explained by the equivalence in
terms of performance between the two approaches when estimating the first two statis-
tical moments. Next, let us notice the comparison of the results of the shape factors (i.e.
skewness and kurtosis). Indeed, it is clear from Figs.2c, d, 3c and d that the RBD-DD
approach performs better and therefore, reproduces the experimental estimates of skew-
ness and kurtosis for the friction coefficient of the hot and cold section. A difference is
noticeable when estimating the kurtosis for the friction coefficient of the hot section (see
Fig. 3d) but it remains comparable to the reference and much better than the parametric
estimate. Qualitatively, the results of the RBD-DD approach in Figs.2c and 3¢, confirm
the asymmetry of the histograms in Fig. 1. Moreover, they indicate that the real proba-
bilistic laws of the experimental measurements are characterized by tails spread to the
left, synonymous of a negative skewness coefficient. As for the kurtosis of Figs. 2d and 3d,
the RBD-DD-based estimations reveal a leptokurtic nature of the friction coefficient of
the hot and cold section. These results indicate that the probability laws, corresponding
to the measurements, present higher peaks and higher, larger and heavier tails when com-
pared with a Gaussian distribution. With regards to the parametric estimation method,
the results of the skewness are not consistent with the measurement and those predicted
by the RBD-DD approach. This trend was quite predictable especially for the Gamma fit
since its analytic skewness is strictly positive. So, even if the PDF is fitted to the histogram,
the skewness will not fit the trend of the measurements.
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Fig.3 The first four statistic moments for the friction coefficient of the hot section: a mean value, b standard
deviation, c skewness and d kurtosis. The four statistic indicators are computed directly from (i) the measured
data using Egs. (35), (36), (37) and (38) (the reference solution), (i) the parametric estimation using the fitted
Gamma PDF and (jii) the reconstructed PDF based on the RBD-DD random generator

Solver performances
For illustration purposes, the proposed solver named rFAST-FE, described in “Data-driven
stochastic complex eigenvalue analysis” section, is applied to a reduced braking system.
The latter consists mainly of a rotating part (i.e. the disc) and two pads that come in contact
with the disc (see Fig.4). Each pad is an assembly of 3 other parts: (i) the lining which
brakes the disc, (ii) the backplate as a lining support and (iii) the shim which is used as
a vibration reducing damper. The frictional contact is modeled by the penalty algorithm
using a linear law combined with Coulomb’s model with constant friction coefficient.
The discretization of the master and slave surfaces is done through Surface-To-Surface
technique. Also, it is necessary to point out that the deterministic part of the solution
(Egs. (14) to (16)) is performed in the small sliding and deformation framework.

The present section aims to analyze the numerical performance of rFAST-FE when
solving friction-induced vibrations problem. For that purpose, 10 random variables are
chosen, namely

— friction coefficient 1 between the pads and the disc. It should be noted that the friction
coefficient is treated numerically identical for both pads.

— Young modulus of the disc £, the backplate E;, and the shim E

— stiffness element Gj; of the pads which involve an anisotropic behavior,

to perform stochastic simulations on the reduced brake system. Several intensive simula-
tions are carried out on several stochastic populations ranging from 51 to 50, 001 iterations
using an In-house High Performance Computing platform equipped with a total of 128
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Fig.4 FE model of the reduced brake system

cores. Since we deal with stochastic simulations, a specified 2-level parallelization scheme
is used to provide results within a reasonable computing time. For the sake of clarity, let
us suppose a SFE model with 3200 iterations and each iteration requires 4 cores. The
first level consists on distributing the stochastic iterations on 32 blocks of 4 cores. On
the second level, each iteration is parallelized, to solve the deterministic problem, using a
shared memory paradigm.

The numerical performances of the rFAST-FE solver will be compared with those of the
classic MC-FE and FAST-FE developed in [36,42]. For a fair comparison, the data-driven
framework will not be used here; the same usual laws will be used to model the random
variables mentioned above. Additional informations about the stochastic setup are given
in [36,42]. Note also that the order of the harmonics, M, is set to 4 for both rFAST-FE
and FAST-FE solvers. The investigation of the effect of the parameter M on rFAST-FE’s
numerical performances will be discussed in “Effect of the harmonic order M” section.

In order to quantify the convergence rate and compare it with its counterparts (i.e. MC-
FE and FAST-FE approaches), the relative error in the Frobenius sense will be defined. It
measures the distance of the design mapping introduced in [36] between the finest model
and those containing a moderate stochastic population. For example, the finest model
for rEAST-FE solver is characterized by a stochastic iteration number of 50001, while the
benchmarks for MC-FE and FAST-FE contain 40000 and 30001 iterations, respectively.
These represent the reference solution for each method and denoted by D,..¢. The relative

error reads,

1
2

I Dyeg — D, lIF L
e,:%, and [|Alr= (YD la; *| , Ae Mpu(®), (39)
I Dref IlF i=1 j=1
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and its results are reported in Fig. 5. As mentioned in the literature, the MC-FE approach
converges slowly and requires a large number of stochastic iterations to have a meaningful
result. On the other hand, it is clear that FAST-FE (red curve) performs better. It was also
argued that the convergence of the latter is ensured by the criterion in Eq. (10) which
links, in an indirect manner, the CPU time with the dimensionality of the x-space KJ.
In other words, if the number of the random variable increases, the set as well as the
maximum value of the characteristic frequencies will increase, leading to a magnification
in the stochastic iterations and thus, in the CPU time. Despite all the advantages of FAST-
FE mentioned in [36], there remains the black spot of the characteristic frequencies which
links the computation time with the dimensionality of the problem. One way to overcome
this major drawback is to use the RBD approach coupled with the FAST algorithm. Indeed,
the use of unit frequencies combined with random permutations allows to explore what
happens below the FAST-FE criterion as illustrated in Fig. 5 (black curve). Using the same
stochastic and FE setups, several simulations were conducted by the rFAST-FE approach.
Then, the estimator of the error in Eq. (39) is evaluated for each model corresponding to
each statistical population. We note that the relative error of rFAST-FE becomes negligible
after a sample of 801 iterations, well ahead of that of the MC-FE solver, which requires at
least 10000 iterations to reach the same precision. Thus, for the same 10% error prediction,
rFAST-FE needs only 801 iterations instead of several thousand. Note, however, that the
contribution of the rFAST-FE approach induces an important error when the number of
iterations is small. For instance, the prediction with 51 iterations induces an error that
exceeds 100% (!). This result agrees with the demonstrated quantification of the estimator
presented in Eq. (33). Indeed, when N tends to 0, the estimation of the partial variance and
thus of the design mapping will be biased. The bias effect was corrected by re-estimating
the sensitivity indices over the design mapping using the correction in Eq. (34). At the
second step, the above relative error was evaluated on the corrected data (grey curve). As
expected, for a large population size, the corrected estimation tends towards the classical
biased estimate which is, again, in a good agreement with the theoretical results in Eq.
(34). However, when the number of iterations becomes small, the correction introduced
above improves the results by reducing the error by half. For example, the relative error
at iteration 51 and 101 decreases from 120% and 70% to 41% and 32%, respectively.

Finally, let us look at the accuracy of the results predicted by the rFAST-FE solver. To
do so, let us take the relative error defined in Eq. (39) but this time the reference will be
the solution of the FAST-FE solver on the finest sample containing 30, 001 iterations. At
the i-th stochastic model the above error is calculated, in Frobenius sense, as:

FAST-FE rFAST-FE
I D — Dy, [F3
— ref Nl (40)

i
| DEAST-FE

ref ”F

Fig. 6 presents the evolution of the error quantifying the distance between the reference
solution, given by FAST-FE, and each stochastic rFAST-FE model with and without the
proposed correction process. The obtained results confirm again the previous observa-
tions. Thus, the weighted correction introduced in Eq. (34) allows to obtain acceptable
results with a coarse model. In addition to the analysis conducted earlier on the accu-
racy of rFAST-FE compared to its counterpart (i.e., FAST-FE), it is also interesting to
observe closely the design mappings obtained with a reduced iteration number. Figure 7
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Fig.5 Relative error for the stochastic finite element approaches. Comparison of the relative error in Eq. (39)
between (i) MC-FE, (i) FAST-FE, (iii) rFAST-FE and (iv) the corrected rFAST-FE approach

shows comparative results between the reference solution (Fig. 7a) obtained by the FAST-
FE approach using 30001 iterations and those obtained by rFAST-FE with and without
correction process. The comparison of the resulted design mappings, without correction
(Figs. 7b, d, f), with the reference shows that the accuracy at the prediction level increases
with the number of iterations, going from 201 up to 801. On the other hand, the weighted
correction significantly improves the results. With only 201 iterations, we find approxi-
mately the same map as the reference. Indeed, the corrected results of Fig. 7c shows that
there are 7 instabilities (i.e., 7 unstable modes) which result from the contribution of the
friction coefficient, i, and the stiffness Gs3 of pads exactly as discussed in [36,42]. Using
the rFAST-FE solver with the correction procedure reduces significantly the computa-
tional cost. Indeed, the results in Fig. 7c require a CPU cost that does not exceed 1h on 128
cores, which is 7 times lower than that of FAST-FE which converges after 1641 iterations
(see the criterion of Eq. (10)).

Effect of the harmonic order M
Since Fourier expansion is introduced within FEM, the choice of the harmonic order
M, used to compute the partial variances, will affect the design mapping results. In the
previous “Solver performances” section, the harmonic order is kept the same, namely
M = 4, for both FAST-FE and rFAST-FE solvers. The previous configuration comes
from the literature where authors have argued, without a strong demonstration, that an
order M of 4 or 6 is generally considered sufficient [51,52]. In the most recent works [53—
55], authors do not even specify (!) the order of harmonics used to estimate the partial
variances, while others prefer to make it at the disposition of the investigator [44].

This section shows how the order of harmonics M affects the predicted design mapping
results for rEAST-FE solver. First of all, a set of the harmonic order is considered by going
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Fig. 6 Evolution of the relative error of Eq. (40) for the classical (black curve) and corrected estimation (red curve)
of the rFAST-FE solver

from 1 to 10. Then, for each value, errors in Egs. (39) and (40) are computed following the
correction procedure outlined previously.

In the first of these, the computed relative error in Eq. (39), see Fig. 8, reveals an improve-
ment of the convergence behavior when the harmonies order decreases. Indeed, under
the correction procedure, a harmonic order of 1 lead to significant error reduction for a
small sample size models. In the second, i.e. the relative error of Eq. (40) in Fig.9, one
can observe a non-trivial behavior. First of all, when the harmonies order is equal to 1,
the computed error remains higher, 40%, for each stochastic model, synonymous of the
existence of a large difference between the reference solution (i.e. FAST-FE on 30, 001
iterations with M = 4) and the corrected results predicted by the suggested approach. It
should be noted, however, that this no-conventional behavior vanishes with the increase
of the so-called harmonic order. Overall, the error decreases from 68% at 51 iterations
to 8% at 2001 with an evident asymptotic behavior starting from 2001 samples. It is also
important to note and observe the error evolution with a harmonic order of 2 for both
Figs.8 and 9. According to the red curve of the above figures, it is immediately evident
that the corrected solver rEAST-FE using an harmonic order of 2 is super-convergent and
hence, gives much inferior errors for all the stochastic models. For instance, we notice
immediately that the estimated error decreases from 30 to 3% from 51 iterations to 2001.
This performance comparison, under the above conditions i.e. correction procedure using
an harmonies order of 2, is quite remarkable and efficient for this type of problem. It
allows to predict instabilities through the so-called design mapping within very reason-
able stochastic iterations. Furthermore, the last point is completely dissociated from the
dimensionality of the problem, which will avoid the “curse of dimensionality” occurring
when using high-dimensional spaces.
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Conclusion

Throughout this paper, we have addressed multiple aspects pertaining to the prediction
of instabilities of a frictional system. First, using a data-driven framework smoothed by
the Random-Balance-Design approach, the observed uncertainties can be modeled effi-
ciently whether the probability law is conventional or not. The DD-RBD procedure has
proved to be a very powerful stochastic preprocessor tool leading to recover, through the
estimated CDF, the experimental stochastic behavior of the random variables. Second,
the introduction of rFAST algorithm combined with FEM allows to drop out the charac-
teristic frequencies and hence, explore what happens out of the box without, necessarily,
respecting the tricky FAST-FE criterion which involves indirectly the dimensionality of
the problem. Using the same stochastic and FE setups as Maaboudallah et al. [36], inves-
tigations have shown that the novel approach performs better than MC-FE. However,
compared with the classic FAST-FE, the latter reduces errors when the stochastic itera-
tions are beyond FAST-FE criterion. On the other hand, when the latter limits the leeway,
rFAST-FE makes it possible to lighten the constraints and thus, to perform stochastic
finite element simulations with a lower iteration number.

On the other hand, we have demonstrated that the partial variance estimation is biased.
It has been found that the bias term contains the sample size, N, as well as the residual
partial variance V. It is important to note that these theoretical results agree very well
with the computed error, i.e. when the stochastic iterations decrease, the bias as well as
the relative error increase. In order to overcome the bias effect, a weighted correction
is introduced on the estimated partial variance. In this manner, the errors committed at
lower stochastic iterations are reduced by a half.

In the last part of the paper, authors examine the effect of the harmonic order on the
computed errors. A harmonic order of 2 was found the best candidate to efficiently reduce
the errors of the corrected rEAST-FE solver.

We expect that these coupled approach which involves (i) DD-RBD preprocessing tool,
(if) rFAST-FE solver and (iii) the correction process will enhance engineers’ capabilities
to solve friction-induced vibration. The contribution of this study is flexible and can be
adapted with any off-the-shelf deterministic solver whether open-source or not.

Appendix A: Decomposition of the Fourier spectrum estimator based on the
RBD-FAST approach

For the purpose of quantifying the error in the estimation of partial variances related to
the main effect, let us rewrite the model in the following way,

R(pr) = FEM(x;) + 0~x;. (41)

Note that the term g~ involves the contribution of the random variable vector x except
x;, while FEM(x;) is resulted from the main effect. It is important to note, that the last
expression comes from the so-called high dimensional model representation (HDMR),

without taking into account the sum, under Sobol’s assumptions [56]. We write,

R(pr) = ho + Y ) + Y hiloei 6) + -+ Hio_m(®1, % - 5 ), (42)
i

i<j
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where the decomposed terms are given by:

ho = EM(pk)),
hi = EOi(pr) | x:) — E(pi)),
hij = EN(px) | %5 %) — fi — f; — E(R(pr)),

and so on.

(43)

Since the random generator is periodic, random variables will be sampled periodically.
For that logic, the following developments will be presented directly on the 8-space using
the composite function FEM o G.

First, let us examine the mean of the second term in Eq. (41), namely g~,. The linearity
in the expected value allows us to write

E(o~g;) = EM(px)) — E(FEM 0 G(6))). (44)

To lighten the mathematical development, FEM o G(64, . . ., 8,) will be replaced by %i(px)
in what follows. Therefore, the expected value of FEM o G(6;) is given by,

E(FEM o G(6;)) = E (E(FEM 0 G(01, ..., 6,) | 6:))
= E(E(R(pi) | 6;)

= /RE(m(lﬂk) | ei)f@‘ dei
(45)
=/[91(Pk)ﬁ>t@k)\9i AN (pr)fe; d0;
R JR

= [ 900 [ fu dp10 e
R R
— EOU(p),

where fi(y,)6; is the conditional PDF for the random variable 3i(ps) given 6;. Hence,
according to Eq. (44), the expected value of the residual part o~y, is,

Eo~g) = 0. (46)
Second, lets us consider the estimation in Eq. (20), but the concerns will be dedicated

only to the main effect of the random variable x; (equivalently, 6;). Mathematically, we
write,

o 0n0r0 = % /_ 7; FEM 0 G(61, - . ., )¢ 1% dg, 47)
which can be rewritten by

C8 034000 = Eor (FEM 0 G(@y)e 107%), (48)
where,

FEM o G(6;) = E (FEM o G(01, ..., 6,) | 6;). (49)
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Numerically, Eq. (47) can be computed on the model output using the rectangle rule
over N samples. Thus, its estimate is given by,

N

N7 1 i N _ingW

C8 000 = 3 2 FEMo GO, .., 0 )e 71 (50)
j=1

It is important to note that the jth-element FEM o G(Ol(j ), ceo 9,(,j )) in the estimation of
Eq. (50) contains the main effect and also the residual g~g,. Following that, the previous
estimation can be decomposed into two part,

(0:) _ 26:),FEMoG 2,(0:),0~9;
Co,.0,7,0,..,0 = C0, 20,7:0,.. 0+C0 0,700,..,0 (51)
where
1 N ) ()
£ (0),FEMoG N iyt
Co0300 = 3 > FEM o G(6;")e " (52)
j=1
and
2,(0:),0~0; _
C0, 070,00 = Z ~ee i (53)

As explained in “Solver performances” section, the error committed in estimation Eq.
(52) is of the order of 5. However, the error of estimate Eq. (53) remains unknown. To
evaluate it, the Central L1m1t theorem will be applied on Eq. (53). Thus, by evaluating the
complex random variable o~g,e 7%, the Fourier coefficient in Eq. (53) will nearly follow
a Gaussian law. We have

2
> (ei))g*v i o
CO,H.,O,J/f,O;.-.yO ~ N(Wl, ﬁ); (54)

where m = 0 is the mean value and 62 = V(0~¢,) refers to the variance of the residual
part.

Hence, the error of the estimation in Eq. (53) decays at a rate of —= f relatively higher
than that of the estimation in Eq. (52).

Appendix B: Evaluation of the quality of the partial variance estimator based

on the RBD approach
Let consider the decomposition in Eq. (51). By using the fact that the estimation
CO,Q )j gﬁ%OGO has a negligible error. One can approximate CO ,0.,0,..,0 directly by its esti-

mate C(()g i) gL;jlWOOG o- Therefore, Eq. (51) can be rewritten in terms of the mean as follows,

2 2 (6:).0~0; 2
[| 0. ,Oy,,o, Lol ] [| 0. ,OyL,O Lol ]+E[| Co 0,710,..,0 | ] (55)

On the one hand, the estimation in the second term of Eq. (55) can be decomposed into

the cosine and sinus basis. We write,

»,(6:).0~6; L (6:).0~0, ~(0:),0~0;
o =dy o ib y (56)
0,..,0,7,0,...,0 0,..,0,71,0,...0 — 190,...0,5,0,...,0
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where
ﬁé?f.)f,%fy’;’;o,..,,o == Z o), cos(ri6?) (57)
and
Z’ff.)f,%fﬁ,-’;o,...,o == Z o), sin(yi6?). (58)

)0~ » (6:),0~0; e .
According the CLT, & 0 @ % )/9, ,o oand b((),._).’%, }2’,0,._4]0 follow a Gaussian distribution with a

Using the fact that

2,(0:),0~0, 2 | 0o~ 2 ~(0i).0~0; 2
| Coa070.00 =10, 0 ym0,0 I+ 1Bo, 0500,.0 |

and

E . (0i).0~0; 2 b(G)Qwe 2] VQwe,v
|a0,...,0,y,',0,...,0 | E|lb, . 20,7,0,..,0 1“1 = N

Equation (55) can be rewritten as follows,

V,
(9) 2| ~ (9) 2 Q~6;
[' 0,1,0,70,.,0 | ] ~ Co.op0.0 I T (59)

The last equation shows that the estimation of the Fourier spectrum is biased. The bias
depends essentially on the variance of the residual, o~¢,, and the number of stochastic
iterations N.
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