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Abstract

This study develops a new numerical simulation model for rubble mound failure prediction
caused by piping destruction under seepage flows. The piping has been pointed out as a
significant cause of breakwater failure during tsunamis. Once boiling and heaving occur on the
mound surface, the piping suddenly propagates in the opposite direction of seepage flow. For
the seepage failure prediction, a coupled fluid-soil-structure simulator is developed by
combining the ISPH for fluid and the DEM for rubble mounds and caisson blocks. The ISPH, a
Lagrangian particle method for incompressible fluids, can simulate seepage and violent flows
such as tsunamis. The DEM has been applied for discrete particle and rigid body simulations
that include discontinuous deformation, as in the rubble mounds failure and large
displacement of the caisson block. ISPH-DEM coupling simulations have already been
proposed as a technique for multi-phase flows. Still, the technique cannot reproduce the
sudden onset of piping from a stable mound. Two simple assumptions are applied to reduce
the numerical cost for the fluid-soil-structure simulators of a breakwater structure composed of
a rubble mound and the caisson block. Firstly, each rubble is modeled as an idealized spherical
DEM particle with the mean diameter of the rubble. The ISPH particle size is assumed to be the
same size as the DEM particle. Under these assumptions, the unresolved coupling model
between rubble mound particles and fluid, which obtains the interaction through empirical
drag force, should be applied. At the same time, the interaction between the fluid and the
caisson block is fully resolved with the spatial resolution with the ISPH and DEM particle size.
Our new contribution in this paper is how to model the interaction as an unresolved coupling
between seepage flow simulated by ISPH and rubble mound particle modeled with DEM. Our
original seepage failure experiment is simulated using the proposed ISPH-DEM coupling
simulator. We identified the conventional drag force models as the unresolved coupling model
are insufficient to initiate the boiling and piping observed in the experiment. It may be due in
one part to excessive averaging of flow velocities caused by unresolved coupling. Therefore,
Terzaghi’s critical hydraulic gradient is introduced to initiate the boiling and heaving. Unstable
DEM particles, judged by Terzaghi’s critical hydraulic gradient, gradually lose their mass to
represent unresolved suspended fine rubble mound particles. Our models qualitatively
reproduce the sand boiling and backward erosion in the opposite direction of the seepage
flow, as shown in the experiment.

Keywords: ISPH, DEM, Unresolved coupling, Seepage failure, Terzaghi’s critical hydraulic
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Introduction
OnMarch11, 2011,Thehuge tsunami inducedby theTohokuEarthquake(Mw9.0) caused
severe damage tomany port structures, such as breakwaters in the coastal area in Japan. A
proper understanding of the failure mechanism of caisson-type breakwaters is one of the
significant tasks to reduce the damages that following millennium tsunami disasters may
bring. According to Arikawa et al. [1], Breakwater failure, in general, has multiple causes;
(i) Horizontal force due to the water-level difference between the front and backside of a
caisson block, (ii) Scour induced by tsunami over-topping behind the caisson block [2],
(iii) Piping destruction induced by seepage flow beneath the caisson block [3]. Developing
a numerical simulation model, which can simultaneously cover the above three causes, is
desired for the practical design of resilient breakwater systems. The numerical prediction
of the failure of soil structures in the case of multiple factors is being developed as a
general-purpose technique that can be applied not only to tsunami disasters but also
to clarify the causes of embankment failure in recent torrential rain disasters. However,
it is challenging to develop such multi-physics simulation tools due to the complexity
of the failure mechanism of a caisson-type breakwater on the rubble mound. Therefore,
numerical simulations areneeded to investigate the above three failure factors individually.
As Sassa et al. [4] have shown experimentally, seepage flow in rubble mounds reduces the
bearing capacity of the mound. It contributes to scour when a tsunami flows over the
caisson. For these reasons, in this paper, the third cause, (iii) seepage-induced piping
caused by the bearing capacity degradation of a rubble mound, is solely considered.
In preparation for the catastrophic tsunamis that are expected to occur in the future,

there is a need to construct a resilient breakwater system that is tenacious enough to
prevent total collapse even if hit by tsunamis and still function in a disaster-prevention
ability. Numerical analyses have been conducted bymany researchers in the field of break-
waters.Takahashi et al. [3] showed through centrifuge experiments that seepage flows
through a mound caused by tsunamis reduce the bearing capacity of rubble mounds and
reproduce the characteristics of the reduction in bearing capacity by FEManalysis. Ding et
al. [5] studied the stability of the back of a caisson breakwater. They performed a numerical
analysis using theDDA:DiscontinuousDeformationAnalysis [6] to account for the sliding
of the caisson under hydrodynamic loading. They also simulated the effect of the armor
units’ geometry that covers and protects the breakwater mound using DDA. However, it
is desirable to consider the displacement of the caisson and armor units and the deforma-
tion of the rubble mound that serves as the foundation of the caisson and armor unit to
study the damage caused by the tsunami in detail. As Sassa et al. [4] have shown, seepage
flow through rubble mounds reduces the bearing capacity of the mound and contributes
to scour. Caisson blocks placed on a mound with reduced bearing capacity can also be
expected to experience more significant displacement. Therefore, it is essential to select
an accurate simulation method that can track the deformation of the rubble mound to
design breakwaters. For this purpose, numerical simulation should simultaneously sup-
port the discontinuous deformation analysis of rubble mounds composed of gravel and
other granular materials and the violent fluid flow analysis.
The Lagrange-type particle methods, which directly track the behavior of the particles,

are effective for both analyses. A typical method for analyzing discontinuous materials
composed of granular particles, such as rubblemounds, isDEM:Discrete ElementMethod
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proposed by Cundall and Strack [7]. The DEM can represent discontinuities’ behavior
by placing spring and damping elements between rigid particles and has been used in
numerical simulations in powder engineering and geotechnical engineering.
The Lagrange-type particle method can be applied to continuum mechanics and fluid

simulation.Oneof the famousparticlemethods for continuummechanics is the Smoothed
ParticleHydrodynamics (SPH) [8,9], whichwas developed for compressible fluids andwas
already modified for incompressible fluid simulation as the Incompressible SPH (ISPH)
[10,11]. The alternative method is the Moving Particle Semi-implicit method [12] for
incompressible fluids. Due to their Lagrangian nature, these particle methods are well
suited for calculating free surface flows with complex interfacial geometries, such as
tsunamis. The recent research has expanded the range of applications to include geome-
chanical applications [13–15], thermal melting problems in solids [16,17], and medical
problems [18].
Recent advances in computing technology havemadeCFD-DEMcoupled approaches to

particle-fluidmixed flowsmore practical and efficient. In CFD-DEM, the particle trajecto-
ries are usually simulated by the Discrete Element Method (DEM). Then, the fluid part is
solved by some CFD methods using the Finite Volume Method(FVM) [19], Finite Differ-
ence Method(FDM) [20], and meshfree particle methods [21–23] or Lattice-Boltzmann
method(LBM) [24–26].Whether the fluid around the particles is resolved, CFD-DEM can
be classified into two types: resolved coupling model and unresolved coupling model, as
shown in Fig. 1.
The resolved CFD-DEM is an extension of the direct Navier-Stokes solver to the Fluid-

particle Interaction without empirical law for the interaction force between fluid and
particles. Since the conventional CFDmethods are based on the Eulerian description with
the fixed meshes or points and moving particle boundary of DEM should be modeled
by immersed boundary method (IBM) [19,27] and fictitious boundary method (FBM)
[28]. Although the resolved CFD-DEM approach has a clear advantage in its accuracy
without additional empirical laws related to the interaction forces, the fixed meshes or
spacial points should be smaller than 1/10 of the particle diameters, as discussed [29]. For
example, Fukumoto et al. [26] demonstrated the applicability of direct simulations using
the Lattice Boltzmannmethod, an alternative CFDmethod to the Navier-Stokes equation
solver, without macroscopic empirical law to seepage failure of saturated granular soils.
This simulation is, however, limited to two-dimensional calculations using soil particles
with an average size of 550 µm in a 200 × 100mm2 area.
In contrast, the unresolved CFD-DEM [30,31] can reduce the numerical cost in partic-

ulate flow simulations with a macroscopic empirical drag force model. In this approach,
the spatial resolution of CFD simulation can be expanded to at least three times larger
than the particle diameters [32]. In addition, the fluid flow passes through these particles
as a permeable flow. The drag force converts from the average permeable flow velocity
to the average force acting on the structure. Unresolved models use empirical models
to exchange interaction forces, so the fluid around the particles does not need to be
resolved finely. Therefore, the unresolved coupled model has an advantage for coupled
fluid-particle flow simulations due to the lower resolution requirements on the CFD side.
In most existing unresolved CFD-DEM, DEM is solved as a Lagrangian description, and

CFD is mostly solved as an Eulerian description, such as FDM or FVM. In this case, it
is necessary to check whether the overall mass conservation is satisfied for the transi-
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tion from free surface to seepage flow. For this reason, it seems essential to have special
treatment of the advection term and the boundary between the seepage flow and the
free surface flow, according to Fujisawa et al. [33]. However, SPH-DEM or MPS-DEM,
which perform both in a Lagrangian description, track the movement of water particles
with individually representative volumes, automatically ensuring that mass conservation
is satisfied in the calculation process. This is one of the advantages of using the particle
method.
The Lagrange-type particle methods have been applied to research related to break-

water problems. Matsuda et al. [34] evaluated the performance of a caisson breakwater
against earthquake and tsunami damage using the SPH. The failure region propagates
from a localized area near the caisson in this simulation. It is, however, impossible to rep-
resent seepage failure directly because the rubble mound is modeled as an impermeable
continuum domain. Iwamoto et al. [35] proposed aWCSPH-DEM coupled simulation for
scouring prediction after the overtopping on the top of the caisson block. Using the DEM,
they modeled a rubble mound, and fluid flow was simulated by a Weakly Compressible
SPH (WCSPH). This simulation deals with scouring failure caused by tsunami currents
overtopping the caisson, and it does not care about seepage flow, which is the leading
cause of the local piping failure.
In this study, we perform a fluid-soil-structure coupling simulation in which the fluid,

rubble mound, and rigid body are all solved using the particle method, the ISPH method
for the fluid, and DEM for the solid. In the fluid simulation, among the ISPH methods,
we employed the stabilized ISPH method proposed by Asai et al. [36], one of the authors
of this paper, which enables stable pressure calculations. The entire rubble mound of the
breakwater is modeled using three-dimensional DEMwith resolved coupled approach for
interactions between fluid and caisson block but with an unresolved coupled approach
for rubble mound particles. After we check the performance of the conventional drag
force model in the heaving and boiling behavior during the piping destruction, some
modifications will be included based on the traditional critical hydraulic gradient criteria
proposed by Terzaghi [37].
Figure 2 shows the schematic diagramof the seepage failure simulationof the breakwater

mound. Here, the domain � to be simulated is defined as �f for the fluid-only domain
outside the porous rubble mound, �m for the domain inside the porous rubble mound,
and �c for the caisson block. Also, the boundary of the caisson block surface is defined as
�c. Two simple assumptions are applied to reduce the numerical cost for the fluid-soil-
structure simulators of a breakwater structure composed of rubble mound and caisson
block. Firstly, each rubble is modeled as an idealized spherical DEM particle with the
average particle size of the rubble. The ISPH water particle size is assumed to be the same
size as the DEM particle. Under these two assumptions, the unresolved coupling model
between rubble mound particles and fluid, which obtains the interaction force through
empirical drag force, should be applied. On the other hand, the interaction between the
fluid and the caisson block is fully resolved with the spatial resolution with the ISPH
and DEM particle size. Therefore, the Darcy-Brinkman-type governing equations, which
describe the seepage and surface flows continuously, are solved by the stabilized ISPH
method [36] to represent the failure process of the entire breakwater by applying both
unresolved coupled and resolved coupling techniques. Our new contribution in this paper
is how to model the interaction forces as an unresolved coupling between seepage flow
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Fig. 1 Coupling types for fluid-particle two-phase flows

simulated by ISPH and rubble mound particle modeled with DEM. A seepage collapse
experiment conducted by one of the authors [38] on the Kamaishi breakwater is selected
as the validation test.
We identified the conventional drag force models as the unresolved coupling model are

insufficient to initiate the boiling and piping destruction observed in the experiment. It
may be due in one part to excessive averaging of flow velocities caused by unresolved cou-
pling. Therefore, Terzaghi’s critical hydraulic gradient is introduced to initiate the boiling
and heaving. In addition, unstable DEM particles, judged by Terzaghi’s critical hydrody-
namic gradient, gradually lose their mass to represent unresolved floating rubble mound
particles. Our proposed models qualitatively reproduce the sand boiling and backward
erosion in the opposite direction of the seepage flow, as shown in the experiment.
This paper is organized as follows. “Porousmedia and particulate flows simulations with

the Darcy velocity” section and “Numerical method for rubble mound and caisson block
motion based on DEM” section presents the basic mathematical equations for calculating
fluid flow using ISPH and the calculation of ground deformation and caisson behavior
using DEM. “Preliminary validation test for the unified ISPH through a fixed porous
media” section presents a dam-break simulation of flow through a porous media using a
coupled unresolved ISPH-DEM couplingmodel. Finally, a simulation for a seepage failure
experiment of a rubble mound of a caisson breakwater is performed using an unresolved
ISPH-DEMcouplingmodel in “ISPH-DEMcoupled simulation for estimating the seepage
fail- ure of rubble mound” section. Simulations were also conducted using the proposed
method, in which Terzaghi’s critical hydraulic gradient provides a quantitative starting
point for failure, changes the mass of soil particles in the failed area, and shows the
usefulness of the proposed method.

Porousmedia and particulate flows simulations with the Darcy velocity
In this study, the entire rubble mound of the breakwater is modeled with DEM particles.
Since the caisson block, larger than the soil particles, is not permeable to fluids, a resolved
coupledmodel is applied to treat it as a rigid body and amovingwall boundary for the fluid.
On the other hand, the fluid problem inside the porous media should be governed by the
Navier-Stokes equations in a microscopic sense. This requires a high computational cost
if a coupled resolving model is used, which resolves the details of the inside of the porous
media. Therefore, this study applies an unresolved coupling model to the interaction
between soil particles and fluid. To reduce the computational cost, a macroscopic fluid
analysis is carried out to obtain the Darcy flow velocity, which is the volume-averaged



Tsuji et al. AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:1 Page 6 of 27

Fig. 2 A schematic diagram of seepage failure analysis of breakwater mound using ISPH-DEM

flow velocity. Note that in the unresolved coupled model, the drag forces acting on the
particles are calculated from a semi-empirical model. This drag force model for simple
shape structures is already established, but the application to the porous media flow
composed of fine particles is still discussing. The drag force model for the porous media
should be intensely dependent on the porosity and its micro-structures. The drag force
models in the geomechanics are nicely summarized [39]. The selection of the drag force
models will be discussed again in the next section.
After confirming the performance of the conventional drag model for heaving and

boiling behavior during piping destruction, somemodifications will be made based on the
traditional critical hydraulic gradient criterion proposed by Terzaghi [37].

An unified governing equation for Navier-Stokes flow and permeable porous media flows

Before we discuss the drag force model in the unresolved CFD-DEM coupled problem,
we summarize the governing equations for a unified equation for Navier-Stokes flow
and permeable porous media flows governed by the extended Darcy law. In the seepage-
induced failure simulation of the rubble mound, water modeled as seepage flow goes
through the rubble mound and becomes general surface flows outside the mound. The
Darcy-Brinkman type equations are applied in this research to unify these equations.
According to Akbari et al. [40,41], a set of unified governing equations modeling fluid
flows in the saturated porous domain �m and outside porous domain �f are derived as:

Cr(εf )
εf

DvD
Dt

= − 1
ρf

∇p + g + νE(εf )∇2vD + F r(vD, εf ) in �f ∪ �m, (1)

Dρ̂f

Dt
+ ρ̂f ∇ ·

(vD
εf

)
= 0 in �f ∪ �m, (2)

where ρf and g represent the fluid density and the gravitational acceleration vector,
respectively(ρf = 1.0 g/cm3, |g| = 981 cm/s2). p is the fluid pressure, and εf is the
porosity. vD is the Darcy velocity, defined as a locally averaged velocity, defined as the
intrinsic velocity vf multiplied by the porosity i.e., vD = εf vf . Here, ρ̂ denotes the appar-
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ent density, which is given by ρ̂f = εf ρf . This relation regarding the apparent densitymust
be employed to guarantee the volume conservation of fluid inside the porous domain with
the SPH. In this study, the fluid is assumed to be incompressible, and the porosity is
also assumed to be unchanged at each time step. Therefore, the equation of continuity
becomes a divergence-free condition of the Darcy velocity, as follows:

∇ · vD = 0 in �f ∪ �m. (3)

The inertial coefficient Cr(εf ) to add resistance force related to the virtual mass and the
effective viscosity νE(εf ) including the kinematic viscosity νf and an eddy viscosity νT
modeled by the Smagorinsky turbulent model are given as:

Cr(εf ) = 1 + 0.34
1 − εf

εf
, (4)

νE(εf ) = νf + νT

εf
. (5)

When the porosity εf = 1.0, Cr = 1.0 and F r = 0 , the unified Eq. (1) is consistent
with the original incompressible Navier-Stokes equation. Then, the last term in Eq. (1),
resistance force F r(vD, εf ) for the ’fixed’ porous with the porosity, is assumed by:

F r(vD, εf ) = −a(εf ) vD − b(εf ) |vD|vD, (6)

a(εf ) = α
νf (1 − εf )2

ε3f D
2
50

, (7)

b(εf ) = β
1 − εf

ε3f D50
, (8)

where a(εf ) and b(εf ) are the linear and non-linear coefficients in the extended Darcy
law, respectively. These two coefficients are determined from the average diameterD50 of
rubble mound particle and the empirically derived parameters α and β .
The above equations are assumed that the rubble mound domain is fixed with an initial

porosity distribution. Most of them can be applied to the deformable and movable rubble
mound situation. However, the extended Darcy law is not applicable in such situations,
and the resistance model must be modified. In this research, deformation and motion in
the rubble mound are represented by DEM spherical particles with a constant diameter
equal to the average diameter D50 of the rubble mound particle. The resistance force
should be determined by considering the porosity change referring to the DEM particle
motion and the relative velocity of fluid flow and DEM particle velocity. We selected one
of the most fundamental and the most cited drag force models proposed by Wen and Yu
[42] in the particulate multi-phase flow simulation as the modified resistance force. Wen
and Yu proposed a drag force model with two different low and high porosity states. In
this study, the resistance force is assumed by Eq. (6) in the low porosity seepage state, and
the drag force in the high porosity suspended state is given as the equation proposed by
Wen and Yu. The resistance force F r(vD, εf ) in the Eq. (1), defined by Eq. (6), is replaced



Tsuji et al. AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:1 Page 8 of 27

by this modified resistance force F∗
r (vr , εf ):

F∗
r (vr , εf ) =

⎧⎨
⎩

−a(εf ) εf vr − b(εf ) ε2f |vr | vr (εf < 0.80)

−c(εf ) |vr | vr (εf ≥ 0.80)
, (9)

c(εf ) = −3
4
Cd

1 − εf

ε2.7f D50
, (10)

Cd =

⎧⎪⎨
⎪⎩
24 (1 + 0.15Re0.687)

Re
(Re ≤ 1000)

0.44 (Re > 1000)
, (11)

Re = ρ̂f ds εf |vr |
μf

, (12)

whereCd represents the drag coefficient depending on the Reynolds numberRe.μf repre-
sents the fluid viscosity. Note here that the first equation in Eq. (9) has the same function
shape as Eq. (6), but the variable was changed from the Darcy velocity vD to a relative
velocity vr := vf − vs. The modified resistance force can treat a more comprehensive
condition ranging from flow through the mound as a seepage flow to flow with gravels
suspended in the mound.
For the seepage flow problem on the porous structure, the coefficients of the resistance

model are often determined as α = 150 and β = 1.75 based on the Ergun model [43], for
example, by Larese et al. [44] and Peng et al. [45]. However, These empirical coefficients
α and β have varieties in previous studies, and the determination should be carefully con-
sidered, as discussed by Losada et al. [39]. In this study, a preliminary study to determine
this coefficient is carried out in the dam-break simulation through the porous media in
“Preliminary validation test for the unified ISPH through a fixed porous media” section.

Spatial discretization of fluid using the SPH based on the Lagrangian description

The SPH is based on the Lagrangian description and divides a continuum into a set of
discrete particles. These particles have a spatial distance, known as the smoothing length,
over which a kernel function smoothes their properties. In a general SPH analysis, the
physical quantity of the target particle i can be obtained by summing all the neighboring
particles j, which exist within the range of the kernel area. Then, the contribution of
each neighboring particle is weighted according to its distance from the target particle
using a smoothing function. Finally, the motion of the particles can be described by the
interpolated physical quantity based on a simple algorithm. Here, the basic concept of the
SPH method is described by referring to Asai et al. [36].
A spatial discretization using scattered particles is summarized. First, The scalar func-

tion φ(xi, t) of the field represented by the domain � can be expressed as a volume
integration using the Dirac delta function δ at any point x in the domain �. The Dirac
delta functions δ is a sharp function that is ∞ at the origin and 0 elsewhere. It has the
property of becoming 1 when integrated over a domain � with φ(x) = 1 as the function
to be integrated.

φ(xi, t) =
∫

�

φ(xj , t) δ(xj − xi)dx , (13)

δ(x) =
⎧⎨
⎩

∞ (x = 0)
0 (x �= 0)

. (14)
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Instead of this sharp delta function δ, the SPHmethod deals with approximations using
a smooth kernel function:

φ(xi, t) ≈
∫

�

φ(xj , t)W (rij , h)dx , (15)

where W is a weight function called the smoothing kernel function. In the smoothing
kernel function, rij and h are the particle distance between neighbor particles and the
smoothing length, respectively. The distance rij is simply the length of the relative coor-
dinate vector rij = xj − xi (the relative distance rij = |rij|). In SPH discretization, the
differential operators (e.g., the gradient ∇φ, the divergence ∇ · φ and the Laplacian ∇2φ)
acting on a target particle i are evaluated using the neighboring particles j within an effec-
tive radius re. Let Si be defined as the set of neighbor particles j of the target particle i, as
follows:

Si ≡ {j = 1, ..., N SPH | re > rij ∧ j �= i ∧ xj ∈ �} , (16)

where N SPH is the number of SPH particles (serial ID number). For an SPH simulation,
the volume integration in Eq. (15), ∇ · φ, ∇φ and ∇2φ can be approximated as:

φ(xi, t) ≈ 〈φ〉i =
∑
j∈Si

mj

ρj
φjW (rij , h) , (17)

∇ · φ(xi, t) ≈ 〈∇ · φ〉i = 1
ρi

∑
j∈Si

mj
(
φj − φi

)
· ∇W (rij , h) , (18)

∇φ(xi, t) ≈ 〈∇φ〉i = 1
ρi

∑
j∈Si

mj
(
φj − φi

) ∇W (rij , h) , (19)

= ρi
∑
j∈Si

mj

(
φj

ρ2
j

+ φi

ρ2
i

)
∇W (rij , h) , (20)

∇2φ(xi, t) ≈ 〈∇2φ〉i =
∑
j∈Si

mj

(
ρi + ρj

ρiρj

rij · ∇W (rij , h)
r2ij + η2

) (
φj − φi

)
. (21)

The subscripts i and j indicate the positions of a labeled particle; for example, mj and
ρj mean the representative mass and density of a neighbor particle j, respectively. Note
that the triangle bracket 〈·〉 indicates the SPH approximation of a particular function.
Furthermore, note that the two sets of expressions of the gradient models have various
properties that can be converted to each other analytically. η in Eq. (21) is the parameter to
avoid division by zero and is defined by the following expression, i.e., η2 = 0.0001(h/2)2.
In this study, the kernel function adopts the cubic spline curve with the smoothing length
h = 1.2r0 (r0 being the initial distance between SPH particles) and an effective radius
re = 2h.

Discretization of the unified governing equations with the ISPHmethod

In the ISPH: Incompressible SPHmethod, theunifiedgoverning equations, Eqs. (1) and (2),
are first discretized in time by following the projectionmethod based on the predictor and
corrector scheme.Then, the spatialDiscretization is implemented for the time-discretized
equations.
To begin with the time discretization, vD at n + 1 step is written as:

vn+1
D = v∗

D + �v∗
D , (22)
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where v∗
D is the predictor term calculated explicitly from the physical quantities at n step,

while �v∗
D is the corrector term which is implicitly given from the physical quantities at

n + 1 step to correct the predictor term. Based on the projection method, Eq. (22) can be
separated as:

v∗
D = vnD +

εnf �t
Cr(εnf )

{
g + νE(εnf )∇2vnD + F r(εnf )

}
, (23)

�v∗
D = − 1

ρf

εf �t
Cr(εf )

∇pn+1 . (24)

The pressure pn+1 in Eq. (24) is determined by solving the simultaneous linear equation
called the Pressure Poisson Equation (PPE):

∇2pn+1 = Cr(εf ) ρf
εf �t

∇ · v∗
D . (25)

Next, the PPE is discretized into the particle quantities using Eqs. (18) and (21) as:

〈∇ · vD〉i = 1
ρ̂fi

∑
j∈Si

mj
(vDj − vDi

) · ∇W (rij , h) , (26)

〈∇2p〉i =
∑
j∈Si

mj

(
ρ̂fi + ρ̂fj

ρ̂fiρ̂fj

rij · ∇W (rij , h)
r2ij + η2

) (
pj − pi

)
. (27)

Here, ρ̂f denotes the apparent fluid density that is defined by the following equation, i.e.,
ρ̂f = εf ρf . This concept must be employed to guarantee the volume conservation of fluid
inside the rubble mound. The representative volume changes as the fluid density changes
depending on the porosity. Consequently, in an entire analysis domain, including outside
and inside of the rubble mound, the total amount of the fluid volume can be theoretically
conserved.
Using the above SPH approximate operators, the PPE in Eq. (25) is described as:

〈∇2p〉n+1
i = Cr(εfi) ρfi

εfi �t
〈∇ · v∗

D〉i . (28)

This derivation of the PPE is well-known as the formulation under the divergence-free
condition. Next, the velocity at n+ 1 step vn+1

D is determined from the obtained pressure
calculated through Eq. (28) by using Eq. (22) and Eq. (24). The pressure gradient term
needs to be determined to implement this updating procedure. By referring to Eq. (20), it
can be written as:

〈∇p〉i = ρ̂fi
∑
j∈Si

mj

(
pj
ρ̂2
fj

+ pi
ρ̂2
fi

)
∇W (rij , h) . (29)

Finally, the position of a particle is updated from the updated velocity:

rn+1
i = rni + vn+1

Di
εfi

�t . (30)

A particle’s intrinsic Lagrange velocity vf is the Darcy velocity vD divided by the porosity
εf . In the next step, this intrinsic velocity vf is used to calculate the particle position rn+1

i .

Stabilized ISPHmethod for the unified equation

The heterogeneity of the particle distribution directly affects the accuracy of the SPH dis-
cretization. Therefore, the stabilized ISPHmethod proposed by Asai et al. [36] is arranged
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for the unified equation. In the incompressible Navier-Stokes equation, numerical den-
sity 〈ρf 〉i should be preserved with the true fluid density value ρf . On the other hand,
the numerical density in the pressure Poisson equation using the Darcy-Brinkman type
unified equation must be ρ̂fi = εnfiρf , consistent with the apparent density following the
surrounding porosity distribution. The discrete PPE (28) is slightly modified by adding a
stabilization term, which tries to maintain the reasonable density as:

〈∇2p〉n+1
i � Cr(εfi)

εfi

(
ρfi

�t
〈∇ · v∗

D〉i + γ
ρ̂fi − 〈ρ̂f 〉ni

�t2

)
, (31)

where γ (0 ≤ γ ≤ 1) is called the relaxation coefficient and is generally set to be much
less than 1.

Porosity and apparent density/volume

In this study, the ISPHandDEMare coupled throughdrag forces in anunresolved coupling
scheme. Therefore, the porosity εf , which is the volume fraction of voids in a unit fluid
volume, is necessary to calculate the space-averaged fluid density ρ̂f and Darcy velocity
vD. Based on the concept of interpolation approximation of the SPHmethod, the porosity
is obtained from the total volume of wall particles and DEM particles contained within
the influence zone of the target particles as follows:

〈εf 〉i = 1 −

∑
j∈Di

VsjW (rij , h)

1 −
∑
j∈Sci

mj

ρfj
W (rij , h)

, (32)

S
c
i ≡ {j = 1, ..., N SPH | re > rij ∧ j �= i ∧ xj ∈ �c} , (33)

Di ≡ {j = 1, ..., NDEM | re > rij ∧ j �= i ∧ xj ∈ �m ∪ �c} , (34)

where Vs represents the volume of DEM particle. The sets Sci and Di, which are subject
to the sum of the numerator-denominator, are the sets of all DEM particles and the
sidewall/caisson particles of the SPH contained within the influence area of the target
particle i, respectively. Figure 3 shows that the fluid deforms to avoid solid particles in the
gap. On the other hand, the unresolved coupling allows for the overlap of solids and fluid,
so the apparent increase in fluid volume and an apparent decrease in fluid density must
be considered. Therefore, under the constant mass of fluid particles, spatial averaging is
performed using porosity εf , and the apparent density ρ̂f , volume V̂f , and Darcy flow
velocity vD are defined as follows:

ρ̂fi = 〈εf 〉iρfi , (35)

V̂fi = mi
ρ̂fi

, (36)

vDi = 〈εf 〉ivfi . (37)

Numerical method for rubble mound and caisson blockmotion based on DEM
The rubble mound’s deformation and a caisson block’s motion are represented by rigid-
body calculations using DEM. Although the caisson block is cracked and damaged by the
tsunami’s impact, the caisson block is assumed to be a rigid body without deformation in
this study. The rubble mound is represented by rigid spherical particles frequently used
in general DEM simulation. The equations of motion of the rigid elements consider the
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Fig. 3 Image of apparent volume expansion due to water particles penetrating pore space

contact forces between the caisson blocks and the rubble mound particles and the fluid
forces affected by the tsunami. The fluid permeates through the rubble mound because
it follows an unresolved coupling that allows overlap with the fluid. A resolved coupling,
in which fluid force acting on the caisson block is evaluated by the surface integral of
pressure, expresses impermeability without allowing overlap with the fluid.

Defomation analysis of the rubble mound

The equations of motion for the translational and rotational directions of a rubble mound
particle in the fluid can be expressed as follows:

ms
dvs
dt

= ms g − ∇pVs + f d +
∑

j∈Dcon
i

f c , (38)

Is
dωs
dt

=
∑

j∈Dcon
i

(mc − mr) , (39)

D
con
i ≡ {j = 1, ..., NDEM | δn > 0 ∧ j �= i ∧ xj ∈ �m ∪ �c} , (40)

where vs andωs represent the velocity and the angular velocity. Furthermore,ms,Vs and Is
represent one DEM particle’s mass, volume and moment of inertia. Note that the contact
forces f c are summed only for the set Dcon

i of particles j in contact with the particles i.
As in the conventional DEM, the contact is judged to have occurred if there is a positive
amount of overlap δn = ds−|xij|. The general spring-dashpotmodel calculates the contact
forces f c between the rubble mound particles or the caisson block. The contact forces are
divided into normal force f cn and tangential contact forces f ct . The frictional forces are
obtained according to Coulomb’s friction law in the tangential direction.

f c = f cn + f ct = (−k δn − η |vrs|) en − min(μs |f cn|, k δt − η |vrs|) et , (41)

η = −2 ln e

√
k

ln(e)2 + π2
msi msj

msi + msj
, (42)

where k , η, μs, e and δ represent the spring stiffness, the damping coefficient, the friction
coefficient, the restitution coefficient and the contact overlap, respectively. The subscripts
n and t denote the normal and tangential components. en and et represent the unit normal
and tangential vector. vrs is the relative velocity between soil particles. The fluid forces
acting on the soil particles include the buoyancy force ∇pVs caused by the pressure
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gradient and the drag force f d , which depends on the relative velocity vrs between the
neighboring fluid particle and soil particle. This drag force is the interaction force in
coupling with the fluid and is calculated as the reaction force acting on a single particle in
the opposite direction of the fluid resistance force described in Eq. (6).

f d = f aVs
1 − εs

, (43)

f a =
⎧⎨
⎩
a(εs) εs vrs − b(εs) ε2s |vrs|vrs (εs < 0.80)

−c(εs) |vrs|vrs (εs ≥ 0.80)
, (44)

εsi =

∑
j∈Si

mj

ρfj
εfj W (rij , h)

∑
j∈Si

mj

ρfj
W (rij , h)

. (45)

Rubblemounds are packed with spherical particles, and the torquemc that produces rota-
tional motion is generated only by tangential contact forces f ct . Spherical particles cannot
represent the interlocking effects resulting from the actual uneven shape of the particles.
Therefore, rolling frictionmr is introduced to suppress rotation as follows artificially:

mc = ds
2
en × f ct , (46)

mr = −μr |f cn| ω̂ , (47)

where μr and ω̂ represent the coefficient of rolling friction and the axis vector of rotation.

Tracking of the caisson block motion

The caisson blockmotions as the rigid body give moving wall boundary conditions for the
fluid. Particles are placed on the surface of the caisson block that acts as bothDEMcontact
spheres and ISPH wall particles. The contact forces with the rubble mound particles
and the hydrodynamic forces acting from the fluid are calculated simultaneously. The
equations of motion for the translational and rotational directions of the caisson block
are shown below:

M
dV
dt

= Mg + F c + F f , (48)

d(I�)
dt

= Mc + M f , (49)

where M, I, V and � represent the mass of the caisson block, the tensor of inertia, the
velocity and the angular velocity. F c,Mc, F f andM f represent the contact forces, contact
torques acting on the caisson block, the hydrodynamic forces and its torques, respectively.
These are then summed up to the forces acting on the surface SPH/DEM particles of the
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Fig. 4 A schematic diagram of dambreak flow passing through a porous layer

caisson block (Scsi , D
cs
i ), expressed as follows:

F c =
∑
j∈Dcs

i

f cj , (50)

Mc =
∑
j∈Dcs

i

(xcj − X g ) × f cj , (51)

F f =
∑
j∈Scsi

(−pj aj)nj , (52)

M f =
∑
j∈Scsi

(xcj − X g ) × (−pj aj)nj , (53)

S
cs
i ≡ {j = 1, ..., N SPH | xj ∈ �c} , (54)

D
cs
i ≡ {j = 1, ..., NDEM | xj ∈ �c} , (55)

where xj , X g and xcj represent the position vector of the particle j, the center of gravity of
the caisson block and the position vector of the contact particle, respectively. aj and nj are
required to calculate the hydrodynamic forces representing the area represented by the
particle j and the normal outward vector. The rotational motion is calculated according
to the quaternion formulation. Due to the explicit time integration with a high penalty
parameter, DEM requires sufficiently tiny time increments tomaintain the stability condi-
tion. In the DEM and SPH coupled simulations, the time increment is generally governed
by the DEM stability condition. To overcome this difficulty, Asai et al. [46] success-
fully apply the ETI: Energy Tracking Impulse method, which is an unconditioned stable
scheme for multiple bodies contact simulation, to the fluid-structure interaction simu-
lation. However, the ETI in DEM may require many iterations to simultaneously satisfy
all the constraint conditions at each DEM particle. Therefore, in this study, the multiple
time-step algorithms are adopted, in which each time increment (�tSPH > �tDEM) is set
for ISPH and DEM, and only the DEM calculation is solved with fine time increments.
Furthermore, it was assumed that the interaction force with the fluid is constant within
the small loop of the DEM.

Preliminary validation test for the unified ISPH through a fixed porousmedia
Dambreak flow passing through a fixed porous layer

First, as a preliminary validation experiment for the ISPH of the unified equation, we
select the water column collapse through a porous media experiment performed by Liu
et al. [47] as shown in Fig. 4. In this example, we can assume that no DEM simulation was
performed and that the porousmedia was fixed during the simulation. In this experiment,
a 25 cm-high water column collapsed due to gravity and passed through a porous layer.
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The porosity and mean diameter are 0.49 and 1.59 cm, respectively, placed in the center
of the tank to the right-hand side. The conditions for the fluid analysis based on the ISPH
method were initial particle spacing of 0.5 cm and time increment of �tSPH = 10−4 s. To
show the advantages of the stabilized ISPH method described in Eq. (31), we performed
the same simulations for relaxation coefficients γ of 0.00 and 0.01.
In addition, as a preliminary study of the drag model coefficients α in Eq. (7) and β in

Eq. (8), simulations were carried out here with the combination of α = 150,β = 1.75 and
α = 150,β = 0.50. Furthermore, in order to indicate the superiority of the stabilized ISPH
method, as shown in equation (31), similar simulations were carried out for stabilization
parameters of γ = 0.00 (normal ISPH) and γ = 0.01 (stabilized ISPH).
Figure 5 a) and b) shows the pressure distribution for (α = 150,β = 1.75, γ = 0.01) and

(α = 150,β = 0.50, γ = 0.01), respectively. The experimentally observed free surface is
plotted with red circles in Fig. 5). The smoothed pressure distribution can be evaluated
using stabilized ISPH with γ = 0.01. However, compared to the experimental results, the
fluid motion is relatively slow, especially after t = 0.4 s. This is because the coefficients
α and β in the drag model do not match this experimental result, and the appropriate
resisting force is not applied. By calibrating these two parameters, the nonlinear term in
the drag force is reduced by decreasing β to obtain the optimal simulation results shown
in Fig. 5b). Finally, we conducted a simulation with the same set of optimal parameters
alpha and beta, excluding our stabilization term γ = 0. Figure 5c shows this simulation
result. The stabilization term plays an important role in these simulations to satisfy the
total water volume and to evaluate the smoothed pressure distribution.
To confirm the effect of this stabilization term, the apparent fluid density distribution

expressed by Eq. (35) in the simulation results with each parameter set is shown in Fig. 6.
Forγ = 0.0 in the Fig. 6c), the apparent density cannot keep the value corresponding to the
porosity and oscillates significantly. As a result, not only does it decrease the total water
volume over time, but it also causes fluctuations in the pressure distribution as shown
in Fig. 5. On the other hand, as shown in Fig. 6a, b, the simulation using the stabilized
ISPH method with γ = 0.01 shows that the apparent fluid density in the porous media is
consistent with the porosity, resulting in no volume reduction. These results show that the
stabilized ISPH method can achieve excellent volume conservation and stable pressure
calculations even in fluid analysis where there is a transition between the free surface and
seepage flow.
The last part of this section discusses the role of drag and parameter settings. As sum-

marised in the review paper by Losada et al. [39], many forms of drag model equations
have been proposed, and their coefficients are set in a wide range (α = 150 ∼ 1000, β =
0.2 ∼ 2.0) depending on the porous structure under consideration. In a similar problem
using the same coefficients (α = 150,β = 1.75) as in Fig. 5, some papers have shown
better results using the high-accuracyMPSmethod, such as Harada et al. [48]. Coefficient
forms that do not treat the drag coefficient as a constant and use the porosity as a variable
have also been proposed [49,50], which could be used to set parameters for a wider range
of application problems automatically. Incidentally, the coefficients of this drag model are
close to those obtained by Korzani et al. in their coupled simulations of sheet pile piping
problems (α = 150, β = 0.40). The same coefficients (α = 150, β = 0.50) were used in
the following numerical simulation of the seepage collapse of a breakwater, although it is
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Fig. 5 Pressure distribution and free surface profile of the dambreak flow passing through a porous layer

difficult to determine a drag model that can be commonly applied to all cases, and further
study is needed.

ISPH-DEM coupled simulation for estimating the seepage failure of rubble
mound
The main validation for the seepage failure prediction is given here. Kasama et al. [38]
conducted a series of hydraulic model tests on a scale of 1/100 for the Kamaishi Harbor
Mouth Breakwater. In this experiment, seepage flow is generated in the rubblemound due
to the water head difference in water level between the seaside and inner harbor side. As
shown in Fig.7, sand erosion occurred in the rubble mound on the harbor side when the
water level difference was 145 mm. The caisson block’s sliding, rotation and settlement
occurred due to the horizontal hydrodynamic forces caused by the water level difference.
In this study, the ISPH-DEM coupling method, given in the previous section, is first

applied to represent this experimental test [38]. Then, the additional failure criteria based
on Terzaghi’s critical hydraulic gradient will be introduced to improve the accuracy of the
seepage failure prediction.
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Fig. 6 Apparent density distribution of the dambreak flow passing through a porous layer

The particle simulation model is shown in Fig. 8, and simulation conditions are sum-
marized in Table 1. The initial conditions are created by randomly packing rubble mound
particles under gravity. It is desirable tomodel the rubblemound according to the particle
size distribution of the actual mound. However, the number of particles would be enor-
mous, and the computational cost would be unfeasible if even the finest particles were
modeled. Therefore, this rubble mound is formed by DEM particles with average size
(single particle size) to represent the overall collapse behavior. The boundary condition of
the sidewall is set as the slip condition in the fluid analysis and zero friction in the DEM.

ISPH simulation of fluid flow passing through a fixed porous mound

We assumed the fixed porous media for the rubble mound like the above example to
investigate pressure and the piezo water head distribution before we introduced the DEM
incorporated with the ISPH for the movable mound example. Figure 9 shows the pressure
distribution at a hydraulic head difference �h of 145 mm and the distributions of the
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Fig. 7 Seepage failure and sliding failure with head difference of 145 mm, adapted from Kasama et al.(2020) [38]

Fig. 8 Schematic diagram of simulation model

piezo head �H expressed as follows:

�Hi = pi
ρf |g| + �zi , (56)

where �z is the height from the initial water level at the harbor side. Moreover, the
hydraulic gradient of each water particle is defined as the gradient of the piezo head �H
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Table 1 Simulation conditions for seepage failure simulation

ISPH (Tsunami)

Initial particle distance r0 0.50 cm

Density ρf 1.00 g/cm3

Kinematic viscosity νf 0.01 cm2/s

Relaxation parameter γ 0.001

Time increment for ISPH �tSPH 10−5 s

DEM (Rubble mound)

Diameter ds 0.50 cm

Density ρs 1.86 g/cm3

Restitution coefficient e 0.10

Friction coefficient μs 0.752

Spring stiffness k 100000N/m

Rolling friction coefficient μr 0.10

Time increment for DEM �tDEM 10−7 s

DEM (Caisson block)

Diameter of component particle 0.50 cm

Density 2.03 g/cm3

Volume Height 19.5 cm × Breadth 18.5 cm × Depth 5 cm

and can be evaluated by referring to Eq. (20):

ii = 〈∇(�H )〉i = ρ̂i
∑
j∈Si

mj

(
�Hj

ρ̂2
j

+ �Hi

ρ̂2
i

)
∇W (rij , h) . (57)

As shown in Fig. 9, the stabilized ISPH method [36] produces a transition of smooth
pressure and piezo head distributions throughout the interior of the rubblemound. Fig. 10
also shows the piezo head distribution obtained on the rubble mound’s DEM particles
at the hydraulic head difference of 145 mm, and this distribution is normalized by the
hydraulic head difference of 145mm, i.e., ht = �Hi/�h. In this section, theDEMparticles
are fixed at their initial positions. The porosity values on the DEM particle are evaluated
as in Fig. 11a. The range of evaluated porosity is from 0.3 to 0.6, and the value is lower
than the average value (0.493) in the experimental setting. Particle packing with spherical
particles of average size may give a lower porosity than with random particle shapes.
Therefore, we put a limitation of the evaluated porosity value on the DEM particle with
the average porosity value (0.493) in the experimental setting. Applying the limitation, the
DEMporosity distribution becomes almost homogeneous, as shown in Fig. 11b. The other
parameters for the Darcy-Brinkman type unified equation are given only from physical
properties, such as porosity and themean particle size, without any calibrated parameters.
Under these assumptions, the evaluated piezo head agrees with the experimental data
shown in Fig. 10.

ISPH-DEM simulation of seepage failure in caisson-type breakwater

Next, all DEM particles constituting the rubble mound and caisson block were set to
be movable, and the ISPH-DEM coupling analysis was performed to simulate the seep-
age failure of the rubble mound. The simulation conditions are the same as in the fixed
mound simulation case listed in Table 1. The drag forces in the rubble mound give the
deformation of the mound, and the caisson block is also moved by receiving the fluid
force acting on its surface. Deformation of the mound and the caisson block and water
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Fig. 9 Distribution of the pressure and the piezo head on SPH

velocity distribution are shown in Fig. 12. The direction of seepage flow shown in Fig. 12c)
changes from horizontal to upward in the transition zone between the top of the rubble
mound on the harbor side and the water domain, marked with the black dashed line.
The rubble mound shows a small deformation by receiving the drag force, but we cannot
represent the caisson block’s soil heaving behavior and rotation as shown in Fig. 7. The
rubblemound ismodeled in this simulationwith single-sizeDEMparticles to reduce com-
putational cost. Therefore, smaller particles than the DEM particle cannot directly affect
this simulation. In addition, the DEM particle movements are modeled as an unresolved
coupling framework with an empirical drag force model. Our simulation results gave a
good piezo water head compared with the experimental measurement in the preliminary
validation with the fixed mound. However, the selected drag force due to the averaged
Darcy velocity may need to be modified, or the contribution of particles smaller than the
average size may need to be included. Cheng et al. [51] also pointed out the limitation of
the unresolved coupling model. They conclude that unresolved coupled simulations with
the conventional drag force may be relatively smaller than the actual averaged force, thus
overestimating the critical hydraulic gradient of the subject ground. In order to represent
in detail localized failures, such as the experimentally confirmed sand boiling, we pro-
pose a simple modification of the drag force modeling to consider the contribution of the
unresolved fine particle effects as a reduction of mass in the DEM particles.
In geomechanics, the critical hydraulic gradient is often applied to predict the initiation

of piping failures. Piping is considered to occur when the hydraulic gradient of the seepage
flow through themound exceeds the critical hydraulic gradient. In this study, piping failure
at each soilDEMparticle is judgedby comparing their hydraulic gradient iswith the critical
hydraulic gradient ic proposed by Terzaghi [37]. The hydraulic gradient at DEM particle
is given as:

is(isx, isy, isz) =
∑
j∈Si

mj

ρj
ij W (rij , h) , (58)

ic = Gs − 1
1 + e

. (59)
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Fig. 10 The comparison of piezo head distribution between proposed simulation and the experimental data of
Kasama et al. [38]

Here, Gs is the specific gravity of the mound material, which is given by Gs = ρs/ρf .
Moreover, e is the void ratio defined as e = εs/1− εs. This study’s Gs is set to 2.63. When
the ground is horizontal, the vertical component of the hydraulic gradient vector is is
compared with the critical hydraulic gradient, and the judgment is made as follows:

⎧⎨
⎩
isz ≥ ic (in �

piping
m )

isz < ic (in �stable
m )

. (60)

Breakwater mounds are generally trapezoidal with a slope, and their shape changes over
time due to piping failure. Therefore, the piping criteria for horizontal surfaces should be
generalized to any shape with a slope. In this study, the normal outward vector orthogonal
to the rubble mound surface is calculated for each DEM particle, and the inner product
of the normal vector and the hydraulic gradient vector is used to determine whether the
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Fig. 11 Distribution of the porosity on DEM particles

hydraulic gradient exceeds the critical hydraulic gradient as follows:⎧⎨
⎩

| − is · ns| ≥ ic (in �
piping
m )

| − is · ns| < ic (in �stable
m )

. (61)

The unit normal vector ns is updated every step according to the following equation
using a setDstable

i that includes only stableDEMparticles j in its neighborhood (j ∈ �stable
m ):

nsi = −

∑
j∈Dstable

i

Vsj∇W (rij , h)

∣∣∣∣∣∣∣
∑

j∈Dstable
i

Vsj∇W (rij , h)

∣∣∣∣∣∣∣

, (62)

D
stable
i ≡ {j = 1, ..., NDEM | re > rij ∧ j �= i ∧ xj ∈ �stable

m } . (63)

After judgment with a generalized piping failure criteria defined in Eq. (61), we assume
that the mass of the DEM particles may decrease as the unresolved fine particles flow
out. In our experimental setting, the inside of the mound was given the experimentally
obtained density ρs0 = 1.86 g/cm3 and mean porosity εs,ave = 0.493. The DEM density
value after the piping failure was corrected to linearly decrease to ρs,min = 1.1 g/cm3
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Fig. 12 ISPH-DEM coupling simulation result

following their porosity εs, according to the following formula:

ρn+1
s, i∈�

piping
m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρs0 (εsi < εs,ave)
ρs,min − ρs0
0.8 − εs,ave

(εsi − εs,ave) + ρs0 (εs,ave ≤ εsi ≤ 0.80)

ρs,min (εsi > 0.80)

. (64)

The criteria for the minimum density ρs,min is the same value (εsi = 0.80) as the criteria
of the drag force defined in Eq. (44) for suspended particles. The density of DEMparticles,
which once decreased, is not allowed to recover.
The same numerical example is solved here with the modified drag force model with

Terzaghi’s critical hydraulic gradient. Figure 13 shows simulation results with the pro-
posed model. In Fig. 13a, red and blue particles indicate unstable and stable particles.
Figure 13b shows the reduced density of unstable particles. As in the experiment, the
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Fig. 13 Simulation with piping judgment based on the critical hydraulic gradient and soil density modification

updated results show that piping failure begins beneath the caisson block at the har-
bor side. The localized sand blowing from the failure point is qualitatively expressed by
decreasing the mass of fine particles near the mound surface, assuming they are lost due
to the piping failure caused by seepage flow. Furthermore, backward erosion, in which the
failure proceeds in the opposite direction to seepage flow toward the seaside, is expressed
qualitatively from where the sand boiling occurs. The clockwise rotation of the caisson
block and deformation of themound is similar to those observed in the experiment. Notes
that themass and volumeof the rubblemounddonot conserve because the fine suspended
particles are never traced in this simulation.
Through numerical tests with the conventional drag force model and the proposed

one, we confirmed that the conventional unresolved simulations could not reproduce the
internal destabilization of the ground caused by the detachment and movement of fine
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particles in the soil skeleton due to seepage flow. We proposed a simple modification
in the drag force model to reduce mass after the piping failure judgment with Terzaghi’s
critical hydraulic gradient.Although theproposedmethod still has roomfor improvement,
such as satisfying the mass and volume conservation for suspended fine particles, it can
demonstrate the backward erosion, sand boiling, and caisson motion observed in our
piping failure experimental tests.

Conclusion
This study simulates the piping failure of a breakwater rubble mound caused by a seepage
flow using an unresolved ISPH-DEM coupling method. In the proposed method, Darcy-
Brinkman-type governing equations were employed to describe surface and seepage flows
in a unified manner with porosity as a parameter. The interaction force between the fluid
and soil particles is assumed to be a drag force that depends on the relative velocity of the
two, and the unresolved coupling method is used to reduce the computational cost. On
the other hand, for caisson blocks that do not allow water to pass through to the inside, a
resolved coupling is implemented in which ISPH wall particles are placed on the surface
and treated as amovingwall boundary.We performed a numerical analysis corresponding
to the seepage collapse experiment by Kasama et al. [38]. The simulation qualitatively
reproduced the overall failure morphology of the breakwater, including deformation of
the rubble mound due to seepage flow and sliding and rotating of the caisson block due to
horizontal forces. However, it wasn’t easy to represent the localized sand boiling observed
in the experiments. This problem is that the unresolved coupling model implemented in
this study excessively averaged out the locally large velocity flows that are the starting
point for blowing sand. In addition, we considered that the modeling of rubble mounds
using particles more significant than the average particle size from the viewpoint of the
computational cost was a problem because it could not represent the instability of the
ground due to the detachment of fine particles. Therefore, a piping judgment based on
the critical hydraulic gradient was performed, and particles judged to be unstable were
assumed to have been washed out by seepage flow from the surrounding fine particles. A
mass reduction process was applied to the particles. This method represented backward
erosion propagating beneath the caisson block in the opposite direction to the seepage
flow and reproduced the caisson settlement caused by the piping.
As fundamental issues in our SPH simulation, the method for setting drag coefficients

and improving the SPHmethod need to be discussed in-depth in the future. In particular,
to solve detailed flow inside the ground, it is necessary to improve themethod to represent
complex flows, including negative pressure regions. For these problems, it is necessary to
improve the accuracy of the gradient model [52] and the Laplacian model [53,54], which
are also problems of the conventional SPH method.
As this study shows, internal erosion that occurs inmicroscopic areas of the ground, such

as soil particle loss due to seepage flow, significantly influences the macroscopic stability
of the ground. Therefore, analyzing the actual particle size distribution, including even
the finest soil particles, is desirable, using DEM, and calculating detailed pore flow using
resolved coupling simulation. In addition,we aim todevelop a simulator that can efficiently
solve internal erosion in the groundby implementing a semi-resolved coupling [51,55] that
combines a resolved coupling and an unresolved coupling. If this semi-resolved coupling
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method becomes available, it should be able to efficiently and inmore detail determine the
interaction between flow and soil particles in the ground. It should apply to the numerical
analysis of large-scale structures such as breakwaters.
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