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Abstract

Calibration or parameter identification is used with computational mechanics models
related to observed data of the modeled process to find model parameters such that
good similarity between model prediction and observation is achieved. We present a
Bayesian calibration approach for surface coupled problems in computational
mechanics based on measured deformation of an interface when no displacement
data of material points is available. The interpretation of such a calibration problem as a
statistical inference problem, in contrast to deterministic model calibration, is
computationally more robust and allows the analyst to find a posterior distribution over
possible solutions rather than a single point estimate. The proposed framework also
enables the consideration of unavoidable uncertainties that are present in every
experiment and are expected to play an important role in the model calibration
process. To mitigate the computational costs of expensive forward model evaluations,
we propose to learn the log-likelihood function from a controllable amount of parallel
simulation runs using Gaussian process regression. We introduce and specifically study
the effect of three different discrepancy measures for deformed interfaces between
reference data and simulation. We show that a statistically based discrepancy measure
results in the most expressive posterior distribution. We further apply the approach to
numerical examples in higher model parameter dimensions and interpret the resulting
posterior under uncertainty. In the examples, we investigate coupled multi-physics
models of fluid—structure interaction effects in biofilms and find that the model
parameters affect the results in a coupled manner.

Keywords: Bayesian calibration, Inverse analysis, Coupled problems, Fluid-structure
interaction, Interface shape, Biofilm

Introduction

In this article we present a robust approach for Bayesian calibration [1,2] of coupled
computational mechanical models based on the deformation of an interface or boundary.
In the most general case, the search for a set of parameters leading to a desired model
result can be understood as an inverse problem [3]. Basic elements are a computational
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mechanics model 9, also called the forward model, with model parameters x that are
considered as inputs to the forward problem. The model parameters can be prescribed in
the model and they are expected to significantly influence the associated model response.
The inverse problem is characterized by the task to find one or multiple model parameters
that result in a desired model behavior. In this paper, we are interested in a special case
of desired model behavior which is given in form of observed experimental data. Here,
we want to find suitable model parameters such that the model response is close to the
experimental data in a given metric. This category of inverse problems is also known as a
calibration or parameter identification problem.

We want to distinguish two different viewpoints on the calibration problem. We refer
to the first one as the deterministic calibration approach, which poses the calibration task
as an optimization problem by minimizing a discrepancy function over the forward model
parameters, between the forward system response and the experimental data. Following
the deterministic optimization approach, the problems are often ill-posed. The second
viewpoint is the probabilistic Bayesian calibration approach, that we follow in this article.
In contrast to the aforementioned optimization, the Bayesian approach adopts a statis-
tical viewpoint. It seeks the posterior probability density for the input parameters. This
density quantifies the probability of resulting forward model system outputs to match the
experimental data best, in a specified norm. Instead of a single point estimate as in the
optimization problem, the posterior distribution returns the unique probability density
for all inputs in the input space. This allows to answer a plethora of additional research
questions. A Bayesian, statistical viewpoint does not only provide a powerful mathemat-
ical framework for the formulation of the inverse problem but also helps with the design
and interpretation of very flexible discrepancy measures between simulation output and
experimental observation. Those can be formulated in form of reproducing kernel Hilbert
space (RKHS) norms as demonstrated in this article. The Bayesian setting allows for the
incorporation of available prior knowledge which is especially advantageous in the small
data regime, induced by expensive simulation runs or limited experimental data. The
Bayesian formulation provides a consistent mathematical framework that can naturally
deal with different sources of uncertainty such as they might arise from partially unknown
experimental conditions, as also studied in this work.

The scenario where a mechanical structure changes its shape under mechanical load,
but no displacements of individual material points can be determined is the focus of the
presented approach. Such scenarios appear when only the shape and changes in shape of
a structure can be observed, e.g., in the form of image data. In that case only information
about the shape of a boundary or interface is reliably accessible, without further details on
correspondence of material points in simulation and experimental data. For such scenarios
that have been studied before [4] for, e.g., cardiac mechanics [5] or arterial growth [6], we
want to investigate and discuss the effect of different definitions for discrepancy measures
between simulated and observed interface deformations of objects. Especially regarding
bio-materials the main interest is to determine material properties as they act in-situ, i.e.,
in the natural environment. Traditional material testing often defines standardized testing
methods where the specimen must be isolated and installed in a specific testing device. For
very sensitive materials the isolation of a specimen can already change the properties of the
material of interest significantly. Often such scenarios occur with coupled physics as, e.g.,
fluid—structure interaction (FSI) problems, as an isolation of the specimen would interfere



Willmann et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:24 Page 3 of 39

with the coupling. That is why a comparison between deformations in the computational
model and an observed deformation in an in-situ experiment is required to test such
sensitive materials.

While the presented approach will be useful for any kind of (coupled) mechanical model,
our focus will be on the particularly challenging problem class of fluid—structure interac-
tion (FSI). A specific motivation for us is our research on biofilms and respective exper-
iments conducted with such biofilms. Biofilms grow with aggregates of microorganisms
that form a structure of extracellular polymeric substances to withstand environmental
influences. This is also known as the biofilm matrix [7]. Amongst others due to its soft
consistency, the determination of mechanical properties of biofilms is an open field of
research and different intrusive and non-intrusive attempts have been made to quantify
the material behavior [8—10]. The better understanding and analysis of biofilm material
properties is essential to better explain biofilm behavior and to enable the development
of reliable and predictive computational modeling. Well parameterized mechanical mod-
els enable engineers to make valid predictions of biofilm behavior, e.g., deformation,
growth or erosion and use those to develop biofilm-prone systems. This means to either
avoid invasive biofilms or improve productive biofilm systems. Biofilms usually develop
on surfaces exposed to fluid flows and therefore a mechanical model must include the
ESI between biofilm surface and the fluid. As the capability of computational mechanical
models of fluid—solid interaction increases, the inclusion of such models in deterministic
inverse analysis of biofilms has emerged in recent years [11,12]. One of the best approaches
to acquire image data of biofilms is via optical coherence tomography (OCT) in flow cell
experiments, as used in, e.g., [11,13,14]. This type of experiments is favorable in means
of mechanical testing as it is non-destructive and the biofilm can be kept in the same
environment for the whole cultivation and test process. Recent advances in automated
biofilm cultivation and design of flow cell experiments [15] have already shown that a
variety in biofilm shapes is inevitable even for reproducible environmental conditions and
therefore a flexible method of comparing biofilm shapes is required for conclusive inverse
analysis. Recently, Bayesian estimation and uncertainty quantification (UQ) have been
used for models of urea hydrolysis by biofilms [16].

The rest of the article is structured as follows. First, the theoretical concepts of the
Bayesian approach for an efficient model calibration under uncertainty will be presented.
The technical details and realization of our approach are then outlined. Eventually, we
demonstrate and discuss the calibration procedure of numerical models in examples of
biofilm motivated fluid-solid interaction models for generated data in two to six input
dimensions. Results and key aspects of the workflow are then concluded.

Continuous formulation of the Bayesian calibration problem under uncertainty
Our Bayesian calibration approach is based on the continuous formulation of Bayes’ rule.
Therefore first the general formulation of the Bayesian calibration is introduced and
subsequently extended to include the effects of uncertainties. As a necessary step, the
formulation of a likelihood model is described and specific choices for the measure of
discrepancy between interface shapes are introduced.
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Standard formulation for Bayesian calibration

We assume that we have a computational forward model 9t (x, C) for a real-world process,
i.e., in our case a single- or multi-field continuum mechanical problem, whose response
depends on the choice of inputs x and the choice of (e.g., spatio-temporal) coordinates
C. In general, observations are compared in more than one location and point in time
and therefore the coordinates are written as a matrix C with vector entries for each
comparison. Consequently, the observations for all coordinates are a matrix Yohsc as
well with vector entries for each coordinate vector. In our case for the comparison of
interface deformations, the observations are locations of the interface that define its shape
for one or more points in time. The input parameters x are the quantities of interest
in the calibration process. The vector # denotes a collection of model parameters that
are subject to calibration and might represent, e.g., material parameters, boundary or
initial conditions. The observed data Y psc might additionally be subject to unknown
measurement noise.

In the Bayesian framework, the calibration problem is interpreted as an update of a
prior belief about the parameters, encoded by a prior density p (x), by a so-called likeli-
hood model p (Yobs,cm (%, C )). The likelihood model expresses the probability density
to observe the experimental data Y, c at coordinate C given a specific choice of model
with input x evaluated at the same coordinates C. As the expression p (Yobs,C|9:n (x C ))
is only a valid density in Y,psc but not in the model inputs ¥ one mostly refers to it
as the so-called likelihood function. The likelihood function relates the output 91 (x, C)
of the computational model 9t with the observation Y, ¢, given a specific choice of
parameters x. The value of p (Yobs,c|5m («, C)) at a specific # can be interpreted as the
probability density of the observations Y,ps ¢ for the given model choice 9 (x, C) or as
a score value for the parameter choice x. The product of the likelihood function and the
prior can be evaluated point-wise in the parameter space €2, yielding a function that we
call the unnormalised posterior p (Yobs,CISﬁ (% C )) p (#). Normalizing this expression by
[ P (Yobs M (#, C)) p (x) dx such that we get a valid density that integrates to one, yields
the posterior distribution p (x| Yobs,C)' The posterior distribution can be interpreted as an
updated prior distribution, after the knowledge of the experimental data Y5 ¢ has been
incorporated and related to the forward model 971 (x, C).

An advantage of the Bayesian viewpoint on calibration is the possibility to encode prior
knowledge of the unknown parameters or inputs x in the so-called prior distribution p (x).
Prior knowledge is information about the parameters that is available before seeing the
data. Often, at least a vague understanding about which values are possible or realistic
is available (e.g., the Young’s modulus must be positive E > 0 Pa). This knowledge and
additional valuable expert knowledge can be incorporated as prior and therefore the
solution of the calibration complies with it.

We can then pose the calibration problem as a Bayesian inference task by applying
Bayes’ rule [17]

likelihood prior
(Yobs,c19M (%, C)) p (x)
p bs,C X, px
P (*lYobsc) = = o p (Yobs.c|M (x C)) p (). (1)
———

/ » (Yabs.c I (3, C)) p (x) dx

posterior unnormalized posterior

evidence
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In (1), the posterior p (xIYobs,c) represents the unique solution of the Bayesian cali-
bration task in the form of a probability density. It is a probability distribution over the
input parameters x assigning a probability density to each input vector of how well the
forward model 901 (x, C) evaluated with that model parameter combination represents the
observation. The interest of the analyst is to find high posterior values and learn for which
inputs they occur. The posterior density is usually not known in closed form, due to the
implicit dependency on x in the forward model 91 (x, C) within the likelihood function.
Nevertheless, the posterior density can be evaluated point-wise, which implies a forward
simulation run for the particular choice of ».

For computationally expensive models, a grid-based evaluation of the posterior in the
entire input space 2 is unfeasible. Due to the curse of dimensionality, this problem
becomes especially amplified for dim (x) >> 1. The numerical approximation of the pos-
terior is hence usually conducted using more advanced algorithms which aim to exploit
regions in the input space with high posterior density. In this work, we use the sequential
Monte Carlo (SMC) method for this purpose but postpone a more detailed discussion of
that algorithm and its numerical realization to the dedicated sections, to first focus on the
continuous presentation of the Bayesian calibration problem.

The denominator [ p (Yobs,c|9ﬁ(x, C)) p (x) dx, respectively evidence in (1) acts as a
normalizing constant for the posterior, such that it becomes a valid density function in x
which integrates to one on €2,. Nevertheless, the evidence is mostly not computed explic-
itly, as it involves potentially high dimensional integration over Q. Consequently, most
numerical algorithms operate on the unnormalized posterior or its logarithm and take
care of the normalization in an easier to compute post-processing step. Given the poste-
rior distribution or a numerical representation in form of samples or an approximating

distribution, further statistics or point estimates can be calculated and derived.

Remark 1 (Marginalization) Sometimes one might be interested in the density over a
subset of variables, averaging over the remaining parameters. This can be achieved by
so-called marginalization. A marginal represent a projection of the high-dimensional
density, e.g., p (x,', x,-), for a selected subset of parameters «x;, and reflects the average
effect of all other parameters x; on the density over parameter subset x;. The marginal
distribution is then expressed by the following integration

px) = / P (%) da; = / P (xil%) p (x)) dxj = By [p (xil;) ] )

One example are projections of a higher-dimensional posterior p (%;, %j|Yobsc) to a
marginal posterior p (inYobs,C) such that the analyst can investigate the posterior in
x; averaged over the effect of x;. This enables us to regard and print marginal posterior
distributions with i < 3 in result plots.

Bayesian calibration under uncertainty

After the basic concepts of Bayesian calibration have been presented, we want to extend
the ideas to the case of non-controllable, uncertain conditions that influence the model
M. Those are summarized in the vector . We assume that  is not part of the model
input variables x# that we want to calibrate. Instead, it represents inherently uncertain
external conditions, e.g., of the experimental set-up, that we cannot fully control at the
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time of the analysis. Furthermore, we assume that these conditions are subject to uncer-
tainties expressed by a distribution p (#) and that the computational forward model is also
dependent on @ in the sense of M (x, 6, C).

The calibration problem under uncertainty can then be formulated in two steps [18,19].
First, we naively compose a Bayesian calibration problem in analogy to (1), with the only
difference that the model is also dependent on #. Consequently, the posterior p (x|0, Yobs,c)
is conditionally dependent on 6, as demonstrated in (3a). In a second step, we can then
average over the effect of the uncertain conditions @ by taking the expectation of the
previous posterior Egy [p (x|0, Yobs,C)] with respect to the density p (f) as shown in (3b).
The resulting modified posterior, which accounts for the average effect of the additional
uncertainty introduced by 6 is then denoted by g (x|Yopsc) and is different from the
former posterior p (x| Yobs,c) which did not incorporate these additional uncertainties.

p (xw’ Yobs,C) xXp (Yobs,ijt (x’ 0, C))P (x) (33)

ﬂﬂ%md=Eﬂpwﬁnmd]=/P@M%mdPWN0

extended posterior:

(8] Yobsc) (3b)
a/pmmdmmaanmmwmo

unnormalized extended posterior

Another interpretation of (3b) is the marginalization of the extended posterior
p (x, 0|Yobs,C) with respect to the uncertain conditions 6. Later-on, we show that the
sequential Monte Carlo (SMC) algorithm allows simple operations on the unnormalized
extended posterior, analogous to the unnormalized posterior from (1) if no additional
uncertainties are present. SMC offers the possibility to conduct the necessary marginal-
ization of @ as a cheap post-processing step.

Remark 2 (Point estimates and moments of the posterior) Given a potentially high dimen-
sional and complex posterior density, there is often the desire to represent its characteris-
tics by simpler, e.g., scalar quantities. The most intuitive approach, especially coming from
the mindset of deterministic optimization, is to look for the maximum a posteriori (MAP)
estimate. It represents the combination of parameters that lead to the highest posterior
density. Further, the maximum likelihood estimate (ML) is interesting to isolate the model
feedback from prior assumptions. It is analog to the MAP for the assumptions of uniform
priors. Also statistics of the posterior as the posterior mean (PM) and variance can be used
for its simplified quantification. Other than point estimates, also a region of values with
highest posterior density can be determined. This region is then characterized by holding
a certain probability mass fraction of the posterior and is often called percentile.

Selecting a likelihood model

The evaluation of the likelihood function represents the computationally expensive part
of the Bayesian calibration as a forward simulation run has to be conducted for every
evaluation of the likelihood with respect to 9t (x, 8, C). The likelihood is a probabilistic
model for the discrepancy ® between experimental data Y5 ¢ and forward model output
M (x, 0, C), written as ® = D(Yops,c, M (%, 6, C)). It usually models the statistical behav-
ior of experimental noise and modeling errors. It returns the probability density of the
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experimental data for a given choice of simulation model. This means that it is centered
around the forward model results. Usually, only one experiment is observed.

While many different likelihood models exist [20,21], we chose the common case of a
conditionally independent Gaussian likelihood model with static noise-variance 0131. This
choice implies that we assume that the scattering of the measured data Y,ps ¢ can be well-
explained by a normal distribution which is centered around the simulation output Y¢
with variance 013]. Here conditional independence means that the measured noise in yobs ¢,
does not influence the noise in yobs,c,, wWith ¢1 and ¢, being two different coordinates.

The conditionally independent Gaussian static likelihood model is given by

D2 (M, 0, C), Yobsc)
e O 202 '
(20) 7%

wherein 7 is the dimension of the measurement Yyps c. In the simplest case it is the total

P (Yobs,c|M (x,6,C)) = (4)

number of individual measurements. As most inverse iterators operate on the logarithm
of the densities for better numerical condition, we also provide the logarithmic version of
(4), which is often abbreviated by L(x, #) resulting in

2

L(x,0) = —g log(2m0) — % (5)

5
N

Discrepancy measures between interfaces

In selecting a likelihood model the immediate question arises about how to define a dis-
crepancy measure ® between the forward model and experimental results. This becomes
especially intricate when the experimental images do not provide real displacements for
individual material points, i.e., in this sense prohibit a point-wise correspondence of the
geometrical objects. This constraint almost only allows for comparisons of edges, bound-
aries and interfaces in the image data that can usually be identified depending on their
contrast. This step is called segmentation of the image data. More detailed information
on segmentation approaches etc. are out of scope for this work. As a result of the seg-
mentation process one obtains a geometric representation of interfaces between different
subdomains in the images.

In the following, we present three different discrepancy measures that can be used when
working with such kind of image data, namely Euclidean distance at measurement points,
closest point projection distance and reproducing kernel Hilbert space norm. Figure 1 shows
sketches of the discussed distance measure definitions in 2D. The sketches in Fig.1 are
related to the type of problem, of fluid—biofilm interaction, exemplarily analyzed in the
numerical examples. The methods are not bound to this type of problem and can be
applied to different topologies or isolated shape characteristics.

Euclidean distance at measurement points The first approach is an Euclidean distance
measure as presented in [12]. At several selected points on the experimentally observed
biofilm surface, specific directions are chosen and the distance to the corresponding
deformed interface resulting from the forward model simulation is measured. As dis-
cussed in [12] measurement points should be selected in regions of significant, charac-
teristic displacements. Measurement directions should be chosen normal to the observed
interface. (See Fig. 1a with predefined directions in blue.) These distances are summarized
in a vector oflength 71,,. They represent the distance measure between the forward model
evaluation and the experimental observation. The resulting distance measure Dy is then
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N 3
(b)

Fig. 1 Exemplary 2D sketches for different types of discrepancy measures between experiment (green) and
discretized forward model (black). Portions of the observed interface that are accounted for are given in green

and unconsidered portions are given in gray. a Euclidean distances dy,, at measurement points in preset

(a)

directions in light blue, b closest point projection distances dépp for all nodes in light blue, ¢ triangulation centers

¢; as crosses and normal vectors n; of equal length as arrows for triangulations of the experimentally observed
interface in green and the forward model result in blue. Detailed explanation in text below

defined via the Ly-norm of the distance vector

Dmp = : . (6)

dmp |,
This procedure is especially well suited if the observed experimental measurements have
different reliability throughout the regarded interface, e.g., due to the particular physics or
imaging peculiarities as only a point-wise and no full representation of the interface must
be measured (i.e., the gray parts in Fig. 1a are not part of the analysis). By a meaningful
selection of measurement points, where significant deformation takes place and the data
is trusted, the analyst has direct control over which data is being processed.

Closest point projection Another approach for a distance between curves or surfaces
is the closest point projection distance for a selected number of points on the interface
in the discretized forward model. In the case of finite element models, a suitable choice
for the points are the Gauss points or the mesh nodes, as pictured and used here, on
the regarded interface. The closest point projection distance to the experimental result is
determined based on the segmented image of the interface, as shown in Fig. 1b, and used
in the distance vector with the length of the number of interface nodes ni,. Afterwards,
we define the Ly-norm of the distance vector as the distance measure D, with

1
dCPP

Depp = : . (7)
We choose the discretization of the finite element model and define the distance vector
then by computing the distance of the closest point projection w.r.t. the experimental
surface or interface.

Inner product in reproducing kernel Hilbert space (RKHS) A third, statistically motivated
discrepancy measure is formulated as a reproducing kernel Hilbert space (RKHS) norm.
It does not only take into account the location of discretization points, but also the ori-
entation of the surface elements in space. Before presenting our specific variant, a more
general mathematical foundation of the measure is outlined in the following.

Distance measures © between two curves (or surfaces) f, f, can be elegantly defined
by an inner product of the distance function dr(s) = f; — f, in an associated Hilbert
space H as demonstrated in (8a). Simply speaking, a Hilbert space is a vector space and
can be seen as the natural extension of the Euclidean space to arbitrary dimensions. The
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inner product directly induces a norm according to (8b).
(df(s), dy () = / dy(s)w(s)dy (s)ds (82)

Dy = |dp(s)],, = /(d(s), dp(s)n (8b)

Here, w(s) > 0 is an optional weighting function. A special case of a Hilbert space 'H
is the so-called reproducing kernel Hilbert space (RKHS), here denoted by V. We omit a
full description of RKHSs and only present the most important concepts in this work but
point the interested reader to [22] for a comprehensive derivation and description of the
latter. Some further details of the RKHS framework are presented in the appendix. An
RKHS V is a Hilbert space that is equipped with a reproducing kernel k(x, y) and the inner
product

(df (%), df(x))y = /df(x)k(x, &' )dy (x")dxdx' (9a)

Dy = |dr @), =/ (dr ), ds () v. (9b)

The inner product of the difference in the normal vectors of two functions describing
two interfaces in (10b) results in a sensitive distance measure that also accounts for the
orientation of the interfaces. The distance of the function values is encoded in the kernel
function which expresses the statistical correlation between the functions. For the kernel
we choose the radial basis function (RBF) in (10b) which takes the location vectors, respec-
tively the function values f(s) as arguments and returns their correlation. The expression
is also known under the term surface currents [23] and was already successfully applied
for inverse analysis in [6,24]

du(s) = ny (s) — ny,(s) (10a)

z)V,sc =V <dm dn)v’
|5 (10b)
ith k (f;, = ——=
wit (f1 f2) exp ( 702

w

We want to highlight that (9a) allows for many other definitions of d and k which can be
used to emphasize special features of the investigated data. Further examples would be
outside the scope of this article. But they might be interesting to emphasize other special
features of the investigated data.

The discrete representation of (10b), e.g., in a finite element simulation, for surfaces or
curves are expressed in form of respective elements and meshes. In the simplest case those
are interface triangles, resulting from linear tetrahedral elements in 3D, or interface lines,
resulting from linear elements in the two-dimensional case. The interface triangles or lines
have normal vectors n.y ;,1.f,; and element-surface centers c.r,; and ¢y, ;. Normals
and center points can be directly determined from the discretization. The difference vector
of the two normal vectors is written as dye = nef,; — n,f, ;. The approximation for (10b)
follows as a double sum over the elements from f; and elements from f,

g%ﬂ,sc ~dpes Ane)v = Z Z [nefpi -k (Cefpi’ Ce,fz,j) Hef, )
i=1 j=1 11)

— 2o i - Kk (Cof i Caf ) Maf i + Mef i - Kk (Cof i Cofyf) Hefy]
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Using the mechanism of an RKHS for a definition of a surface distance measure has some
advantages, that we want to emphasize. First, such a measure allows comparing the whole
geometry rather than distances at selected points. It is further a more flexible approach
with exchangeable kernel and therefore associated RKHS. It provides a solid mathematical
foundation and still gives the analyst the flexibility of choosing an appropriate kernel that
will emphasize geometrical features of choice. The kernel parameters that can be referred
toas hyperparameters can be made subject to optimization in the calibration approach and
therefore the RKHS approach allows seamless integration into a probabilistic framework.

Remark 3 (RKHS interpretation) The interpretation of a distance measure as an RKHS
with respective norm allows a conclusive mathematical foundation. In fact also the
Euclidean distance and the closest point projection distance can be interpreted as differ-
ent RKHS. These have very specific kernels. Therefore, their re-interpretation is omitted.
Generally, a multitude of RKHSs with respective kernels can be designed in an elegant
mathematical manner to emphasize different characteristics of the image. One example
could be to use a weighting depending on the distance to the closest Dirichlet boundary

condition.

Remark 4 (Three-dimensional geometry) Although we will only present two-dimensional
applications, the distance measures are equivalently applicable to three-dimensional use
cases. As the evaluation of the similarity measures is the only step where geometry is
evaluated, this generalization to 3D is obviously also true for the whole approach presented
in this work. If accurate three-dimensional images are available from the experiment it
would be preferable to use those to increase model accuracy and therefore the quality of
the inverse analysis.

Bayesian calibration—realization and algorithmic aspects

After the mathematical basis for the inverse problem was presented above, we elabo-
rate on the realization and algorithmic aspects as well as computational efficiency of the
proposed approach. Several algorithms exist to find an approximation to the posterior dis-
tributions in (1) and (3b). Common strategies are particle methods that can be achieved
through the Markov Chain Monte Carlo method (MCMC) [25], specifically by the well-
known Metropolis-Hastings algorithm and its variants [26]. Further methods are based
on Importance Sampling [27,28] and especially the family of Sequential Monte Carlo
(SMC) methods [29,30]. Other, more recent strategies are based on Variational Inference
[31,32], where a parameterized distribution is optimized to match the true posterior as
close as possible in a given norm. Here, we choose an SMC method as an established,
state-of-the-art method.

Numerical approximation via sequential Monte Carlo (SMC) sampling

An efficient approach is needed to approximate the unnormalized posteriors of the
Bayesian calibration problem (1), (3b) and their normalization. While a grid-based approx-
imation of the posterior is feasible for low dimensional parameters x, the necessary amount
of grid-based evaluations grows exponentially with the dimension of & and SMC meth-
ods become significantly more efficient as they exploit regions of high density. Sequential



Willmann et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:24 Page 11 of 39

Monte Carlo (SMC) methods are popular sampling methods to efficiently explore a prob-
ability distribution 7 for which no closed expression exists.

The result of the SMC sampler is a particle representation 8, of  with associated
weights w in the form of

N
m @)~y wis (). (12)
i=1

Therein every particle has a location and weight {x(i), w(i)}?il. It is further known [33,
34] that with this approximation any integral over an integrable function & (x(i)) can be

approximated by a sum that converges to the integral

N
> wih (x(i)) - /h (%) (x)dx  almost surely. (13)
i=1

Specifically, we use an SMC method [35] which sequentially blends over from a particle
representation of a predefined prior distribution to a particle representation of the actual
posterior distribution. A convenient aspect of the particle representation in (12) is that
they allow for a straightforward approximation of integrals (13), as they appear in marginal
distributions (2). This is especially useful for Bayesian calibration under uncertainty and
the associated integration in (3b). Here, the numerical integration is conducted by simply
ignoring the dependency on @ in the particle representation.

The SMC algorithm we use in this work uses an adaptive step length based on [33, 34, 36].
Herein, a control parameter ¢ for the effective sample size (ESS) is used to control step
length. The ESS is defined as

1
ESS= —— (14)

Sy (w9)”
and is a measure for the current weight distribution. The ESS represents how well the
probability density mass is distributed amongst the used particles.
The presentation of the SMC algorithm is compactly demonstrated in the pseudo-
algorithm 1 and described in remark 5. For more details, the interested reader is referred
to [29,30,34].

Remark 5 (Description of SMC algorithm) An SMC algorithm generally starts with the
steps to draw an initial set of particles from the prior distribution and initially equally
weigh them. Then it needs to iteratively find a suitable step size and reweigh the par-
ticles. Resampling becomes necessary if too few particles carry too much weight of the
distribution and likewise many particles lose significance. The particles are sequentially
rejuvenated according to the new control parameter y and therefore new intermediate
distribution (15). The rejuvenation step is carried out with a scaled covariance of the cur-
rent step as demonstrated in [37] based on the acceptance rate of the Metropolis-Hastings
algorithm used for rejuvenation. The Metropolis-Hastings algorithm is a Markov Chain
Monte Carlo (MCMC) sampler [38], of which we omit the presentation for the sake of
compactness. It is used to move the particles according to the new intermediate distribu-
tion. Reweighting, rejuvenation and possibly resampling are iteratively repeated until the
intermediate distribution blends into the posterior, i.e. y = 1, which is the necessary last
step if no other suitable y can be found. For the sake of a proper probability density, i.e.
integration to 1, the resulting weights are finally normalized.
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Algorithm 1 Sequential Monte Carlo algorithm with adaptive step length.

Draw N particles from prior distribution

Uniformly weight particles wy

Set step counter s = 1, and control parameter y = 0
while y < 1.0do

Find y; so that ESS; &~ ¢ESS;_1 by reweighting wy = w,_; n(n(sl%
S=¥(s—1)

if no y; < 1.0 can be found then
Set y = 1.0 and reweight
Do final step towards posterior myg,.,1.0
end if
if ESSy < ESSpin then
Resample
end if
Rejuvenate with n,j MCMC iterations on the likelihood model to get 75,
Raise step counter s = s+ 1
end while
Normalize weights

The so-called tempering strategy that defines the transition from the prior to the poste-

rior as a sequence is written as

sy (x) = exp (y £ (%)) p (%) (15)
with the logarithmic likelihood £ (x) as introduced in (5) and the prior p (¢). Finally, after
reaching y = 1 the particle approximation has blended over into one for the posterior
distribution.

Approximation of the log-likelihood via Gaussian process regression

To efficiently evaluate the likelihood function in (15) we use a Gaussian process (GP)
regression model [39] for the log-likelihood function (5) that can be trained on a control-
lable amount of forward model evaluations. The main idea is that for a given computational
budget, represented by the number of forward model runs, the approximation error of
the surrogate is considerably smaller than the error in the SMC posterior approximation
for the same number of forward simulation runs. A similar approach, where the model
output is directly used as data to train a Gaussian process regression model as a surrogate
for Bayesian calibration was used in [1]. Gaussian processes are often used to generate
regression models and therefore a brief summary of the core equations is presented in
the appendix. The presented overall approach would also work with different regression
approaches as linear or spline interpolation or in case of cheap enough forward models
would also work directly on the forward model.

We use the log-likelihood £ (x) of the Bayesian calibration problem as presented in
(5) to train our GP upon. This gives the advantage that the regression models do not
need to fulfill positiveness constraints. This would be the case if the GP was trained
on the unnormalized posterior or likelihood directly. Another advantage of learning the
log-likelihood function in contrast to learning the simulation response is that the log-
likelihood is a scalar function.

Training data D are input—output pairs of values that are known about the process and
the regression model can be based on. In our case, we can evaluate the forward model with
any choice of model parameters x, compare it to the observed experiment and determine

Page 12 of 39
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the logarithm of the log-likelihood £ (5). To simplify notation we specify the training
data outputs to a vector of log-likelihoods £irain at different coordinates Xtrain. Thus, we
are free to choose any input batch #¢.i, and compute resulting output £iqin according
to our computational budget. The generation of the training data D for the Gaussian
process regression causes the highest computational costs in the inverse analysis, as for
every training tuple {Ltyain,i» Xtrain,;} One forward model evaluation is required, due to the
dependency of the log-likelihood (5) on the forward model.

Some further advantages of the surrogate approach are an a priori controllable amount
of simulation runs, which can also be conducted in parallel, in contrast to the batch-
sequential model evaluations that the SMC would impose on the forward model evalua-
tions in a direct application. Once the surrogate is generated, the SMC algorithm can run
without the risk of encountering non-converging or failing forward simulations.

To generate the training data D we choose a space-filling design strategy, namely a quasi-
random Sobol sequence [40,41]. The Sobol sequence has the advantage to have superior
uniformity properties [42] and additionally allows for generating further sequential points
that still share the space filling properties.

Remark 6 (Dimensions in GP approach) The number of necessary training tuples for
desired surrogate accuracy is dependent on the complexity of the function, the type
of (space-filling) experimental design and the dimension of the function. The required
amount of training data grows exponentially with the dimension of the problem (curse of
dimensionality), so that for higher dimensions (a rough guideline might be dim(x) > 15)
direct sampling (using more advanced strategies that can incorporate gradient informa-
tion of the model w.r.t. the inputs &) becomes more efficient.

Implementation aspects

The implementation of the algorithm described above was done in the Python software
framework QUEENS [43]. Herein, the Gaussian process regression module GPy [44] was
used for the construction of the Gaussian process surrogates. The sequential Monte Carlo
algorithm based on algorithm 1 is also implemented in QUEENS. For processing of forward
model results the Python package vtk for “The Visualization Toolkit” was used [45]. Some
of the following visualizations were generated with Seaborn [46] and Matplotlib [47].
Parallel axis plots are generated with plotly [48]. We furthermore use PyTorch [49] for the
generation of the Sobol sequences. The forward models were solved with the in-house
C++ research code BACI [50].

Numerical examples

In this section, we present our Bayesian calibration approach for a coupled fluid—structure
interaction problem. We demonstrate the approach with generated data to better assess
its individual steps. Our focus lies on the presentation of the proposed approach and some
general characteristics in the resulting posteriors. In application with real-world data, the
procedure can be used without any changes. The computational mechanics models in the
examples are schematic models for fluid-biofilm interaction that is the motivation for our
research. Therein the fluid—solid interface deforms as a consequence of the interaction.
A further description of the experiments is moved to the appendix as we want to focus
on the model here. In the following examples, we calibrate biofilm material properties
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Fig.2 Schematic of problem setup with domain and interface names. A biofilm (green domain) is grown on the
flow cell floor and is interacting with a flowing liquid (blue domain) that is providing nutrients to and also
deforming the biofilm which in return is changing the flow field. Undeformed (gray dotted line) and deformed
biofilm interface. Inflow (teal) and outflow (yellow) boundaries of the flow cell model are also shown

under partially uncertain experimental conditions. For the numerical demonstrations we
use the fluid-solid interaction (FSI) between incompressible Navier—Stokes flow and a
hyperelastic nonlinear solid material model which is briefly introduced in the appendix.
Although the presented calibration approach is equivalently applicable for single field
problems with deformable boundaries we take the challenge of a coupled multi-physics
model of FSI because we want to advertise the benefit of the approach in such applications.
A variety of different models for biofilms are available and also further effects can be
included (see, e.g., [12,51]), which would just lead to different forward models.

Problem setup

The calibration is performed for hyperelastic material properties of the solid domain
for which we will calibrate the two parameters of a Saint-Venant Kirchhoff material
model. For the given setup of FSI models for biofilms and the biofilm flow cell data, the
location of the fluid-biofilm interface is the primary data available and therefore used
for comparison. A schematic sketch of the problem setup is drawn in Fig.2. For easier
demonstration we first investigate a two-dimensional calibration problem (dim(x) = 2)
without experimental uncertainties (dim(f) = 0) and then move on to more complex
examples.

We chose the same problem setup as presented in [12]. The biofilm geometry is inspired
by analyses done on experimental results in [11,14]. The model domain represents a two-
dimensional channel with dimensions 1 mm X 2 mm, where horizontal fluid flow with
parabolic profile is enforced from the left boundary (see FiFn in Fig.2) with a maximal
volume rate of Vi, = 100 mm? /s. The solid biofilm (green) is attached to the channel
floor. A no-slip condition for the fluid is used on the channel floor and top boundary as
well as the biofilm on the channel floor (see I'f and I'§) in Fig. 2) and a horizontal outflow is
enforced on the right edge (see I'E , in Fig. 2). These boundary conditions are modeled via
Dirichlet boundary conditions on the fluid velocity (and solid displacement accordingly)
and respective free outflow in horizontal direction. The horizontal condition represents
the ongoing empty channel left and right from the modeled domain.

To generate the artificial experimental data, we use a forward simulation of the fluid-
biofilm interaction with a Saint-Venant-Kirchhoff material model for the solid biofilm
domain. The material is characterized by two parameters, namely Young’s modulus E and
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velocity Magnitude [mm/s] pressure [Pa]

0.0e+00 61.7 2.5e+02 -1.3e+01 2.4e+01

displacement Magnitude [mm]

0.0e+00 0.013 0.026 0.04 5.3e-02
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(a) (b)

Fig.3 Field solutions of the ground truth simulation with parameters x4 on the deformed geometry. a Fluid
velocity magnitude, solid displacement magnitude. b Fluid pressure solution

—undeformed
s ground truth
— E~698Pa,v ~ —0.5T1
— E = T709Pa,v =~ 0.404

— E~ 154 Pa, v ~ 0.386
—— E~254Pa,v~ —0.330
— E~400Pa, v ~ 0.274

(a) (b)

Fig.4 Exemplary forward model results for deformed interface shapes for different input parameter samples
compared to the result with ground truth kg = [v = 0.3, £ =400 Pa]T as input and the undeformed state

Poisson’s ratio v. We summarize the chosen input parameters, used for the generation of
T
the data, in form of the ground truth vector xg = [v = 0.3, E =400 Pa] . The fluid has a

dynamic viscosity of uf = 1073 Pa s and a density of pF = 103 kg/m? as a model for water.
The biofilm has the same density as the fluid. The solution of the velocity and pressure
field of the fluid and displacement field of the biofilm is depicted in Fig. 3 for the regarded
quasi-steady deformed state in the ground truth forward model evaluation. As a reaction
to the load imposed by the fluid inflow boundary condition, the solid bends towards the
right as it is plotted in Fig.4. In Fig.4a we see the artificial observation data Yypsc as
the result of the reference simulation with ground truth values xg. Yo c represents the
deformed location (green) of the interface in this example for one single point in time C.
In Fig. 4b we plot the results for some exemplary parameter combinations additionally.

Likelihood response surface for different discrepancy measures

In a first step, we compare the effect of the different discrepancy measures as introduced.
We directly approximate the log-likelihood by the posterior mean function of a Gaussian
process surrogate and use the discussed discrepancy measures. Additionally, we also pro-
vide the posterior standard deviation of the GP to quantify the remaining uncertainty in the
surrogate. All surrogate models for the log-likelihood function resulting for the different
discrepancy measures use the same training input that was sampled with a quasi-random
Sobol sequence to yield a space-filling training design. The training inputs are different
parameters in the forward model and the resulting forward simulations.
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Fig.5 Likelihoods for different surface measure distances with nyain = 1000. a Euclidean distance at
measurement points, b closest point projection distances, ¢ RKHS norm. Normalized for better comparability.
Training samples as circles for successful and gray crosses (on the left side) for failed forward model evaluations

For an estimation of a suitable oy in the likelihood model (4) the known resolution
~ 8 um of OCT [14,15] is considered. The noise standard deviation is assumed to be in
the same order of magnitude, such that oy = 0.01 mm is used in the following. OCT
resolution and standard deviation in the likelihood model are not expected to be equal. A
further discussion is omitted here, as the demonstration here works independent of the
choice and an expressive value can only be found related to real data and chosen image
segmentation. For the RKHS norm we need two parameters on and ow. An estimation
of the length scale oy for the RBF kernel in the RKHS approach in (10b) is made as
ow = 0.005 mm, being approximately 10% of the maximal displacement magnitude (see
Fig. 3(a)).

The resulting regression models for the likelihoods are shown in Fig. 5 for #¢yain = 1000
training points with a Matérn 3/2 kernel (see appendix on GP, Eq. (27) for details). In
general, the likelihood over the parameters can be understood as a score value of how well
the forward model response with respective parameters leads to similar results compared
to the reference data. A discussion and interpretation of the figure will follow below.
For this first comparison, we just use this large number of training points and postpone
the discussion on the GP convergence over nrin to the case only using the RKHS norm
measure. For the distribution of the measurement points in this comparison, the reader is
referred to [12]. In Fig. 5 the fields of the likelihoods are determined from the logarithmic
likelihoods and those fields are normalized in the plots for better comparability. Parameter
combinations thatled to failed forward model evaluations are marked by gray crosses in the
following figures. For our setup, the failing simulations occurred for low values of Young’s
modulus (located on the left side of the plots) representing soft biofilm material, which
lead to large mesh distortions in the ALE FSI approach. For the sake of comparability,
the respective logarithmic likelihoods are plotted in Fig.6 and the associated standard
deviations in the regression models in Fig. 7.

It can be seen, that the response in the likelihoods show a high likelihood of the param-
eters in red for a characteristic curved shape with its peak at the expected ground truth

parameters xgx = [U = 0.3, E =400 Pa]T. A high likelihood corresponds to a high prob-
ability density of the parameter combination to represent the reference data. This means
that the corresponding values for « in this region of the input space result in simulation
outputs that are very close to the observation data under the employed discrepancy mea-
sure. The likelihood falls very close to zero when moving away from the high likelihood
regions, representing low similarity of the forward model result compared to the refer-
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Fig.6 Logarithmic likelihood regression model for different surface measure distances with nyain = 1000. a

Euclidean distance at measurement points, b closest point projection distances, ¢ RKHS norm. Training samples
as circles for successful and gray crosses for failed forward model evaluations
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Fig.7 Standard deviation from logarithmic likelihood regression model variance for different surface measure
distances with nyin = 1000. a Euclidean distance at measurement points, b closest point projection distances, ¢
RKHS norm. Training samples as circles for successful and gray crosses for failed forward model evaluations

ence data. Especially the failed simulations (gray crosses) fall in a region with very low
likelihood values which renders them irrelevant for our investigations. For the rest of the
input space, it can be seen in Fig. 7 that the standard deviation in the regression model is
low and only rises in regions with little data.

Comparing the Euclidean distance measure in Fig. 5a and the closest point projection
in Fig. 5b it can be seen, that the second one is more peaked around the maximum of the
likelihood that is close to the ground truth value xg. This is also a consequence of the
formulation (4) and (5), as the numbers of distance measurements differ greatly with the
number of measurement points #,p = 10 and the number of interface nodes nj, = 66.
The higher number of individual single point measurements generally leads to a more
peaked likelihood with the same oy. It must also be stated that no further weighting of the
closest point projection distances was done, so all nodal closest point projection distances
are considered equally important. This includes the distances for many mesh nodes, that
are close to the boundary conditions and therefore there the displacement magnitude is
lower. An additional data compression approach, e.g., kernel principal component analysis
[21,52] or also a selection of only a subset of the interface nodes could be used to increase
comparability, but this is outside of the scope of the current article. The likelihood from the
RKHS based distance measure (in Fig. 5c) combines both features to be expressive around
the maximum likelihood (ML) point and still have information from more distant points.
The RKHS norm measure correlates all discretized interface locations and orientations of
the model to all counterparts in the observation (see (11)), therefore it is also expected to
be the most detailed measure for this comparison.

The likelihood based on the forward model evaluations adequately combined with prior
distributions results in the posterior (see (1)), which is a probability density of the param-
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eters leading to the observations. It is favorable to have an expressive posterior and there-
fore expressive likelihood as a result to be able to compare posterior values for different
parameter combinations and with that develop an understanding of the forward model in
relation to the observations. In the case of a very flat likelihood the conclusion is that all
parameter combinations are similarly well suited to explain the observations and therefore
they are potentially insignificant to the forward model, at least in the range of the regarded
parameter intervals. This means that all input parameters x will lead to forward model
results that are very close to the observation under the employed discrepancy measure.
The expressive shape of the likelihood based on the RKHS based measure underlines that
this measure is well suitable in the given example to be used for Bayesian calibration.
Therefore it is used in all following examples.

The presented likelihoods were generated using the different discrepancy measures (6),
(7) and (11) and all yield similar characteristics in the shape of the likelihood. Therefore
it can be concluded that in this setting and a fluid-biofilm interface-based measurement
of a flow cell experiment an underestimation of Young’s modulus E is coupled to an
underestimation of Poisson’s ratio v. In applications with real experimental data, it would
make sense to restrict the training points to the intervals, that are believed to contain the
optimum or at least relevant values for the parameters. That could mean to restrict the
Poisson’s ratio to positive values, as this is what would be expected for most materials.
Nevertheless, the resulting shapes representing high likelihood are very smooth for the
whole tested range between v =-0.8 and v = 0.5 and do not show a distinct border
between positive and negative values. This is interesting with regard to biofilm mechanics
in flow cell experiments as it shows that the estimation of E and v is coupled for all surface
comparisons that were tested. For some investigations, this also hints toward the need to
incorporate additional measurements or information, e.g., prior knowledge.

Convergence over number of training points

The most costly part of the presented algorithm are the forward model evaluations that
are necessary to generate the training data D of the GP log-likelihood regression model.
While the convergence of the GP over the number of training data points is dependent on
the character of the underlying function as well as on the selected design of experiments,
we want to show a short qualitative convergence study for the problem at hand for the
distance measure based on the RKHS inner product. In general the convergence study of
a GP w.r.t. the number of training points is difficult as usually it is not feasible to increase
the data point set size by orders of magnitude. Therefore other strategies, e.g., leave-one-
out cross validation can be used as a proxy for the regression error [39]. The requirement
towards the number of training points and the regression model is to catch the relevant
shape characteristics of the likelihood.

For the application of such an approach, it is crucial to know how many forward model
evaluations are required to get results efficiently. To get a first picture the Gaussian process
regression model for the logarithmic likelihood is created for a series of training point set
sizes Miin. For this qualitative study, only the RKHS norm based likelihood was used as
it uses the most detailed comparison and seems to give the most expressive shape of the
posterior. The likelihood parameters were set to oy = 0.005 wm, oﬁf = 0.0005 mm? in all
following examples. The choice % = 0.0005 mm? in our case relates to the discretization
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Fig.8 Convergence of the Gaussian process regression model for the likelihood function over number of
training points Nyain (forward model evaluations). @ Niain = 10, b Niain = 20, € Nirain = 50, d Nrain = 100, @

Nirain = 200, f Nrain = 900. In all cases the same Sobol sequence was used to generate a space-filling training
data set. Training samples as circles for successful and gray crosses (left side) for failed forward model evaluations

size, as the rounded squared average interface element length is /> 2 0.0005 mm?. It is
difficult to interpret oy in relation to the measurement error alone, as especially also
the image segmentation approach chosen to determine the model fluid—biofilm interface
from experimental data influences the choice. We deviated from this parameter choice
for oy in the comparison of the measures to keep it the same for all measures.

We used a Matérn 2/3 kernel (see appendix on GP, Eq. (27)) with one length scale
hyperparameter / (in the standardized input space) and one signal variance 002 which will
be determined via ML estimation using an L-BFGS-B optimizer for the evidence of the
GP (see Eq. (29)). The Matern 2/3 kernel appeared to be the best suitable to represent
the likelihood field as it resulted for the given example. Especially the great variety in
steepness and therefore low smoothness of the likelihood seems to be the challenge for
the regression approach. However, at the moment, no general recommendation for the
GP kernel can be given. As commonly done [39] we used a fixed nugget noise 0> =
107% - (max (Lirain) — min (Lirain)) to stabilize the training of the GP.

In the following, the convergence of the likelihood surrogate model over the number
of used training points is qualitatively shown for the problem at hand. For this study, the
Sobol sequence sampling property is used as all samples are consecutive samples from
the same Sobol sequence. In Fig. 8 it is apparent, that only very few training points are
necessary to estimate the general shape of the likelihood distribution and have a rough

estimate for the optimum. With #¢,i, = 200 samples the ML estimate is already in good
T
agreement with the ground truth xgt = [v =03, E =400 Pa]

It can be concluded that for this two-dimensional example the likelihood surrogate
shows relevant features and the global shape well for n¢y,in = 200 forward model evalua-
tions and no significant gain in accuracy can be expected for a moderate increase of the
sample size. Given that in the following examples a comparison with different priors is
made and another problem dimension in form of an uncertain parameter is added, and
therefore the complexity is increased, we use the Gaussian process model with one length
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scale for all (standardized) parameters, a fixed nugget noise and #rin = 1000 training
points for the following examples (see Remark 6 on dimensionality).

Remark 7 (Distribution of training points) With the applied approach of a grid-based
quasi-random distribution of the samples, there is no compromise between exploration
and exploitation, but the emphasis is put on exploration. It is possible to use available
prior information for the generation of the samples and therefore have higher density of
samples in high prior areas, or use an iterative approach and refine the samples in high
posterior regions.

Calibration of constitutive parameters in biofilm models

In this subsection, the regression model will be generated according to the findings in the
previous examples. The GP was constructed with a Matérn 2/3 kernel, a single length scale
and signal variance for all parameters and a fixed nugget noise variance o2 in (29). 1000
samples were used for the training of the GP. As the likelihood model is available in form
of a cheap to evaluate surrogate, we use 5000 SMC particles and 20 rejuvenation steps per
SMC iteration (which would result in 1 million likelihood calls for 10 SMC iterations). For
the adaptive step size of the SMC iterator a control parameter of ¢ = 0.995 was used (see
Algorithm 1).

In the following examples, we examine the influence of priors in the parameters and
uncertainties on the resulting posteriors. In Fig. 9 all results discussed in this section are
plotted on the same page for better comparability. The different cases will be described
and discussed subsequently in the following paragraphs. Figure 9 displays the resulting
posteriors of the examples in form of SMC particle approximations. To visualize the
character of the data, one particle distribution is shown explicitly in Fig. 9b, where the
particles are plotted at their respective coordinates. The particle weights are illustrated as
circle size and in a color scale. The other three subplots (Fig. 9a, ¢, d) show two-dimensional
hexagonal histograms in a color scale. The particles are sorted into the displayed bins and
summed up using their weights. The percentiles of the two-dimensional posteriors are
additionally simplified as kernel density estimates (KDE) that are shown as black solid
lines. For the KDE a radial basis function (RBF) kernel with bandwidth optimization was
used.

On the top and right sides, the marginal distributions depending on both individual
input parameters are plotted as histograms. The one-dimensional marginal posterior dis-
tributions p (E | Yobs,C) andp (v | Yobs,C) can easily be approximated by sorting the weighted
particles into bins in the respective dimension. The marginals are additionally displayed
in form of KDEs as black solid lines. The used priors are indicated as red dashed lines in
all following plots.

Characteristic points deduced from the particle approximation are marked as crosses.
The maximum a posteriori (MAP) estimate xpap is marked in green and the posterior
mean (PM) apy in orange.

In high dimensions, the posterior cannot be plotted as easily as in the two-dimensional
case. The analyst wants to have a comparative overview of where the mean value of the
posterior is and how the probability mass is distributed in the posterior. For that and as
another common approximation, we also show percentile lines of the global Gaussian
approximation to the posterior in orange. The global Gaussian approximation is parame-
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terized by the posterior mean (PM) vector xpy; and the covariance matrix which can both
be calculated from the weighted SMC particles very quickly.

We also present the Laplace approximation [21] of the posterior distribution around
the MAP estimate depicted in Fig. 9a and ¢ with green solid lines for the two cases without
uncertainty. The Laplace approximation can be understood as a local quadratic approx-
imation of the posterior density function around its MAP in the log space in form of a
Gaussian distribution. The covariance matrix of the resulting local Gaussian distribution
gives an idea of how fast the posterior changes in a certain direction, starting from the
MAP estimate. Please note, that the posterior distribution is not known in closed form
but only approximated by SMC particles with associated weight. We approximate the
MAP estimate by the SMC particle that scored the highest posterior value in the last
rejuvenation step of the last iteration. In these examples, the necessary gradients of the
posterior distribution were approximated by finite differences w.r.t. the input variables x
on the GP regression model. The Laplace approximation was omitted for the case with
uncertain inflow. Laplace approximations are used for approximative Bayesian inverse
analysis methods [6], where the MAP is first found through optimization and then the
Lagrange approximation is computed for an estimate of the variance.

Influence of prior assumptions on the posterior distribution

To show the influence of quantifiable prior knowledge on the posterior, we discuss the
same example with uniform prior and a combined beta-distribution and log-normal dis-
tribution prior on the model input x.

Uniform prior In this first demonstration we choose an uninformative uniform prior
distribution for Young’s modulus p (E) = U (E|100 Pa, 800 Pa) and for the Poisson ratio
p(v) = U (v] —0.8,0.5). Those are independent priors on the parameters and can be
combined to p (E,v) = p(E) p (v).

Figure 9a displays the approximation of the resulting posterior in form of a hexagonal
histogram plot generated with the weighted particles from the SMC run. In Fig. 9b the
resulting particle distribution of the SMC along with the colored-coded particle weight is
shown.

The posterior in Fig. 9a shows an almost linear band shape of high densities. This shows
that it is more crucial to have a good value for Young’s modulus E than one for Poisson’s
ratio v to obtain good similarity between model output and reference data for the given
parameter ranges. The posterior mean (PM) vector computes to xpy = [E ~ 431 Pa, v &
—0.0071]". In Fig. 9a the Gaussian approximation has the same orientation as the particle
approximation to the posterior. Still it can not represent the posterior complexity. The
maximum a posteriori (MAP) is approximated to xyap = [E ~ 388Pa, v = 0.266]".
This xpap is close to the ground truth in relation to the number of training points and
the resulting resolution of training points in the input space.

Interestingly, the Laplace approximation, represented by its percentile contour lines in
Fig.9a in green, is almost oriented orthogonal to the actual posterior (solid black line).
This means, that the Laplace approximation gives a misleading local approximation in
this specific case. That can occur if the posterior has a more complex curvature around
the MAP. In our example, this might be partially induced by the GP approximation, as
well. It seems that the Laplace approximation cannot live up to the complexity of the given
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Fig.9 Representation of the posterior distribution p (E, VlYobs,c) in histograms. Two-dimensional hexagon
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posterior and therefore simplified methods based on the Laplace approximation would
work poorly in presented examples without the analyst knowing. This is why we advocate
the fully Bayesian treatment for this kind of problems.

As mentioned before, we also plot the marginal posterior distributions of p (E | Yobs,c)
and p (V|Yobs,C); respectively. The marginals show that p (EI Yobs,c) has a single, stable,
global optimum and p (vIYobs,C) forms a plateau of high densities. Due to the strong
coupling of E and v and the complex shape of the joint posterior p (E, V|Yobs,C)r the
marginal posterior distributions alone however are not informative for the coupling effects
in the global posterior distribution.

Informed prior Physical insight can be incorporated in prior assumptions and can have
a great influence on the posterior distribution and should be integrated in the analysis.
Besides the uninformative uniform prior that we used in the first example, we now also
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want to demonstrate the effect of an informed prior. For the Young’s modulus, a log-
normal prior is assumed with a mode of E = 300 Pa. The log-normal can be parameterized
with LN (E|luca ~ 5.86, 0,nr = 0.4) with parameters 1. ns, oar that are not standard
deviation and mean of the distribution, but log (E) ~ N (u LN cr% N)' This accounts for
the fact that the Young’s modulus must have positive values and it is very unlikely that it
is close to zero but more probable to find values higher than the mode. For the Poisson’s
ratio a beta-distribution B (v|a = 43/13, b = 22/13) between —0.8 and 0.5 is used as prior.
This distribution has its mode at v = 0.2 and accounts for the belief that the Poisson’s
ratio is more probable to have positive values and is strongly bounded between —1.0 and
0.5 with a decreasing probability towards the boundaries of this interval.

The modes of the presented priors are intentionally chosen to deviate from the ground
truth xg; to show the effect of informative priors. The priors are plotted in Fig. 9c alongside
the respective marginal posterior distributions. It can be easily observed that compared
to the uniform priors used in Fig. 9a, the informed prior assumptions, i.e., distributions
that weight specific areas in the input space higher than others, lead to a posterior distri-
bution which is more pronounced around the ground truth x4t and has less probability
mass in regions with low prior density. As the majority of the probability mass of the
resulting posterior is now in a more compact area of the design space, also the marginal
posterior distributions p (E | Yobs,C) and p (V|Yobs,c) show a more defined shape with one
predominant mode.

Similar to Fig.9a, the joint posterior p (E v|Yobs,c) has more variance in the v-
dimension, rendering v a sloppy parameter. This becomes also apparent as the marginal
posterior distribution p (v | Yobs,C) almost coincides with the prior assumption p (v), indi-
cating a very small influence of this parameter on the likelihood function. This also means
that for this type of measurement the exact value of model parameter v has less impor-
tance for the agreement of mechanical model and observed experiment. In p (E | Yobs,C) on
the other hand the density does not have the same mode as the prior p (E). This underlines
that the likelihood contains characteristic information about this parameter.

The MAP estimate has the values xyap = [E &~ 361Pa, v ~ 0.195]" in this case.
This is slightly lower in both parameter values than in the run with uniform prior. With
the prior modes deviating from the ground truth, a deviation of xpap from the ground
truth towards lower values is expected. Furthermore, we see that the global Gaussian
approximation of the posterior around xpy = [E & 377 Pa, v &~ 0.08]" moves closer to
the mode of the posterior distribution, as the low likelihood areas are further weighted
with low prior values and therefore lose probability mass compared to the uniform priors.
The Laplace approximation is still not a very good local approximation of the posterior.

Material calibration under uncertain boundary conditions

Now we also demonstrate the treatment of additional uncertain influences on the system,
denoted as 6 above. We use the example of an uncertain inflow volume rate in the flow
cell experiment. As generally the biggest biofilm patches in the channel are analyzed, they
take up a significant portion of the cross-section of the channel and force the flow to go
around it. Further, only the middle of the channel can be scanned to high quality using
OCT. Hence, the distribution of the volume flow rate between outlying parts of the cross-
section and the analyzed patch is subject to uncertainties. Overall these considerations
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Fig. 10 Assumed beta-distribution p (Vi,) of assumed uncertain inflow volume rate Vi,

are summed into the assumption of an uncertain inflow rate distribution, that has its
main mode significantly lower than the average inflow rate and a spread distribution
around that, with low density for higher flow rates. This is modeled with an assumption of
p (Vm) as a beta-distribution B (Vin|a =26b= 1.4) between 0 mm?/s and 110 mm?/s
with mode at 88 mm? /s which is plotted in Fig. 10. The value of the volume inflow rate
used for data generation is kept the same as in all other examples Vi, = 100 mm?/s.
The distribution accounts for the belief that only less than average of the fluid volume
rate flows over the biofilm as compared to the rest of the channel. For the two material
parameters uniform priors p (E) = U (E|100 Pa, 800 Pa) and p (v) = U (v| — 0.8, 0.5) were
used.

The resulting joint posterior of the two analyzed parameters under the influence of
the uncertain inflow are plotted in Fig.9d. The posterior under uncertainty, denoted
by q(E, v[Yobs,c) = Ey [£ (E v|Vin, Yops,c)], was then calculated according to (3b) by
incorporating the average effect of the uncertainty of the inflow Vi, ~ p (Vm) In Fig. 9d
it can be seen that, as it should be expected, the additional consideration of uncertainty
of the inflow made the posterior less expressive, such that an increase in the variance can
be especially found along the dimension of the Young’s modulus.

The consideration of an uncertain boundary condition has also moved the point esti-
mates. The MAP estimate for both inputs ¥ moves to lower values of x\jap = [E ~
322Pa, v A 0.09]" than in the uniform prior example without uncertainties. The pos-
terior mean is xpy; = [E ~ 416Pa, v &~ —0.09]". This is expected as the mean of the
assumed inflow distribution is lower than the value used for data generation and therefore
lower stiffness leads to a better suiting deformation.

Remark 8 (MAP estimation after marginalization) With the consideration of uncertain
parameter f(= Vi,) the MAP estimate is more difficult to obtain than without uncer-
tainties. MAP determination is more difficult because the extended posterior (3b) must
first be integrated to the posterior under uncertainty. Although this integration can easily
be evaluated using the particle representation (13), the maximum of the posterior under
uncertainty cannot be found without another assumption. We chose a histogram approach
to collect the SMC particles in squared bins with 30 intervals per input variable x accord-
ing to the illustration in Fig. 9d. The trick of picking the particle that scored the highest
posterior in the last SMC iteration does not work for the posterior under uncertainty or
marginal distributions, as their determination first needs an integration step.

The global Gaussian approximation is more isotrop when considering the uncertainty.
This is represented as a Gaussian approximation that has more circular percentile lines. In
the interpretation of the covariance of the posterior, this means that there is no prevalent
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Fig. 11 Subdomains for heterogeneous biofilm model
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Fig. 12 Error for GP regression model with niest = 100 test points over number of training data points Nyain

direction in this posterior. Compared to the posterior for the fixed boundary condition,
the posterior including the uncertainty g(E, v|Yops,c) = Ey. [p (E, V| Vin, Yobs,C)] is less
restrictive by means of necessary assumptions and therefore also less stiff in the results.
This gives also more flexibility in the results as there is a broader range of parameters to
explain the observed experimental results. Nevertheless, better knowledge about uncer-
tainties p (Vm) can greatly improve the calibration result.

In case non-controllable aleatory uncertainty is present, neglecting it will lead to an
overconfident, wrong posterior as the analyst introduces a modeling error by neglecting
these effects. Incorporating aleatory uncertainty in the probabilistic model will generally
introduce more uncertainty to the posterior (the distribution widens) and might poten-
tially even completely change the characteristics of the posterior distribution.

Calibration of heterogeneous biofilm model under uncertain inflow boundary condition

In our last example we want to calibrate material properties of a heterogeneous biofilm
FSImodel as in [12], but here under an uncertain inflow rate boundary condition. Hetero-
geneity comes into play in such problems due to different age and/or different nutrient
availability of different parts of the domain. Hence, it was a natural choice to also shed
some light on a more demanding case involving more parameters. The three subdomains
are depicted in Fig. 11 and lead to six input parameters, consisting of the Young’s modulus
and Poisson’s ratio of each subdomain.

The parameters x5t = [E; = 500Pa, v = 0.2, E; = 200Pa, vo = 0.1, E3 =
1000 Pa, v3 = 0.3]T for a hyperelastic Saint-Venant-Kirchhoff material model are used
as the ground truth inputs, along with the inflow rate Vi, = 100 mm?/s. All other model
details are the same as for the previous examples, to then generate the synthetic experi-
mental data Y5 ¢ for this heterogeneous case. Please note that in this example we addi-
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tionally assume noise polluted measurement data according to
Yobs,C =M (xgt’ ogt: C) =+ On,obs * €

(16)
with e ~ AV (0,1)

For the following example we choose noise with a standard deviation of oy, obs = 1 um.
In remark 9 we comment on the determination of the GP surrogate for this example.

Remark 9 (Convergence of the Gaussian process surrogate) As the GP surrogate model
for the likelihood is now dependent on six input variables plus one uncertain variable, more
training data is necessary to reach acceptable accuracy of the posterior mean function of
the GP. A small convergence study was performed to find an appropriate training size.
Therefore we successively increased iy according to the Sobol sequence and then
calculated the Ly-error norm between the posterior mean of the GP and the likelihood
evaluated with the forward model at nst = 100 testing points that are fixed consecutive
samples from later in the Sobol sequence and unused in the training data. This is a
representative choice as the good space filling property leads to test points which are
well distributed. The result of the convergence study is plotted in Fig.12. The tested
scenario is a kernel with multiple length scales with a multiplicative coupling [39,53] as
used in the following example. The parameters are expected and also observed to have
different influence on the likelihood. Therefore different length scales and variances in
a multiplicative coupling of Matérn 2/3 kernels for each parameter dimension is used.
As opposed to the L-BFGS-B optimizer used in previous examples, a scaled conjugate
gradient optimizer is used for training for stability reasons.

Figure 12 shows that between 7¢,in = 1000 and 74,5, = 5000 no significant improve-
ment in the given error measure can be achieved. That is why the evaluation with
Hirain = 2000 data points is chosen for the following example as a compromise between
efficiency and accuracy. In general asymptotic convergence can be expected, meaning that
the error measure will go to zero for an infinite amount of training points. For #tain = 500
an increase in the error can be detected. Here a new characteristic in the likelihood func-
tion was introduced with the training points between #,in = 200 and #y,in = 500, that
lead to the increased deviation at the test points.

For the SMC approach a set of 10,000 particles with 30 rejuvenation steps was used
with a step size control parameter of { = 0.998. Just as a comparison to the 74, = 2000
training points used, a full evaluation in every rejuvenation step of the SMC algorithm
would require three million (10,000 - 30 - 10 = 3, 000, 000) forward model evaluations
for exemplary 10 SMC steps. This is neither desirable nor feasible if directly applied to
the expensive forward model. After the proof of concept in previous examples, with two
input parameters and potentially one uncertain parameter, it must be emphasized, that
volume integrals for respective marginals and especially the normalization of the posterior
(1) in six plus one dimensions scale even worse. Just for a moderately sized, grid-based
discretization with 100 sample points in every dimension we would get 1007 necessary
evaluations of the GP-mean. So we make use of the good scalability of the SMC algorithm
in higher dimensions in the following examples.

As already indicated above, in this last example we want to show the full capability of
the approach and therefore we use an example with uncertain inflow rate V;, and added
noise to the data generated from the ground truth values. The assumed distribution on Vj,
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is the same as in Fig. 10 above with a beta-distribution 3 (Vinla =26b= 1,4) between
0mm?/s and 110 mm? /s with its mode at 88 mm?/s. The MAP approximation is found at
XMAP = [E1 ~ 345Pa, v; &~ 0.43, Ey ~ 135Pa, vy ~ 0.30, E3 ~ 1034 Pa, v3 ~ —0.47]T
and the global posterior mean computes to xpy1 = [E] =~ 443Pa, v; = —0.15, Ey =~
431Pa, vy ~ —0.13, E3 ~ 637 Pa, vy ~ —0.14]". Analogously to the lower dimensional
example, the MAP estimate is obtained with a binning approach with 10 intervals in each
input dimension. Therefore it is a rough estimate. Nevertheless, the curse of dimension-
ality inhibits an excessively fine grid. The maximum of the posterior under uncertainty
qualitatively represents the ground truth with E3 > E; > E3 and v; > vy. Only for v3, it
does not correspond to the ground truth. This can be a consequence of the relevance of
the parameter to the overall posterior, as the lateral contraction in the stiffest subdomain,
attached to the ground also has little effect on the interface deformation. In challenging
examples it can be a good idea to first perform a global sensitivity analysis [54,55] and
then focus the inverse analysis only on the most sensitive parameters. It also shows again,
that the problem setup is challenging as the volume inflow rate is used as an uncertain
parameter. But this is also often the case in real-world applications. This has the effect
that the MAP parameters are those of a less stiff biofilm material, than the ones used for
the ground truth simulation.

The resulting one dimensional marginals over the parameters, for which uniform priors
were assumed, are plotted in Fig. 13 as histograms with KDE approximations in black.
Here the letter g(x|Yops,c) is used because the distributions represent marginals of the
posterior under uncertainty (3b).

It can be observed that most of these marginals show a rather uniform distribution. In
this example, this happens as they represent the integration of the posterior with respect
to all other parameters respectively and therefore the probability mass is accumulated
herein. Only for subdomain €2, (in Fig. 13c and d) the posterior marginals acummulate
density around the ground truth E; ~ 200Pa and vy > 0. As these single-dimensional
marginals are not unveiling the full complexity of the posterior, a further step is made
to show two-dimensional marginals for a selected combination of parameters in Fig. 14
as hexagonal histograms with the percentile lines of the KDE approximations. Therein
the interaction effects between the respective combination of parameters can be seen.
Especially within the regions enclosed by the percentile lines of 10% the most probable
parameter combinations for the respective marginals can be found.

The marginal posterior distributions in Fig. 14 show complex densities. As compared to a
deterministic calibration approach for the same example [12], where even the less complex
case with a fixed volume inflow rate Vi, could not be solved, this complex character can
be well represented here in the obtained solution. Furthermore, for Fig. 14a and c it can
be seen that E3 dominates the marginal posteriors that are high around E; ~ 200 Pa for a
plausible range of the other Young’s moduli Ej, E3. Also the shape of the distribution for
Q9 in Fig. 14e resembles the posterior shape in Fig. 9d, which is the one for homogeneous
example with uniform prior and uncertain inflow. This means that parameters in Q;
qualitatively have similar influence in this marginal, as the two parameters have in the
homogeneous example in the posterior. This is also expected as €2, takes up the highest
portion of the biofilm domain (see Fig. 11) and therefore dominates the deformation.
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Fig. 15 Parallel axis plot over all parameters, posterior values p (x|0, Yobs,c) and inflow rate for all particles of the
SMC particle approximation of the posterior with uniform prior assumptions for

As we have six parameters involved, a full plot of the posterior is impossible. Alterna-
tively, a parallel axis plot as in Fig. 15 can be used to get an idea of the underlying posterior
shape.

Over the first six axis we see the input parameters for the range of interest. The seventh
axis shows the extended posterior values for the 10,000 particles from the SMC particle
approximation. The last axis represents the uncertain inflow boundary condition Vj,.
Every line connecting the axis represents one particle of the SMC solution and all lines
are colored by their absolute extended posterior density value. The lines are drawn on
top of each other, starting with low posterior density values in blue and ending with the
highest ones in red. Most of the parameter combinations with high posterior density
accumulate around E; =~ 200Pa and vj, v > 0. The other three parameters Ej, E3, v3
seem to score relatively high posterior values for the whole range of interest. That means
they are individually less significant to a specific value of the posterior density. Given the
subdomain topology, as seen in Fig. 11, these posterior results can also be expected as 2
takes up the largest portion of the biofilm and therefore can also be expected to have the
highest influence on the deformation in this case.

The possibility for such a phenomenological interpretation of the posterior is a very
attractive feature of tackling the inverse problem via the proposed approach, as not only
good point estimates can be concluded, but more importantly the influence of the indi-
vidual parameters on the posterior can be observed and interpreted. The information
revealed in such a probablistic analysis, as for example displayed in Figs. 14 and 15, gives
indeed a lot of insight into the problem at hand. Among others, it also shows how useful
given experimental information is or whether other measurements are needed for the
identification of relevant parameters. With the rich information from such an analysis
also an estimation of the plausibility and stability of the point estimates can be made.
As an example, a deterministic or trial and error approach might end up in identifying
negative Poisson ratios for biofilms (easily understandable when looking at Figs.9 or 15)
and hence identifying biofilms as auxetic materials, as it has been done in the past. The
probabilistic analysis would immediately show the lack of validity for such a conclusion.
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Conclusion

We presented a robust and efficient Bayesian calibration approach for coupled computa-
tional mechanics models with given boundary or interface deformations. We considered
the particularly challenging case, where only interface shapes based on images of the
domain at different points in time or different experimental conditions are obtainable
but no displacements of material points. Lacking such displacements, we also introduced
and compared several metrics to calculate the discrepancy between interface shapes. We
also considered the additional challenge to incorporate the influence of uncontrollable
uncertainties in the experimental setup, such as uncertain boundary conditions

In contrast to deterministic optimization approaches for calibration tasks, Bayesian
calibration is mathematically much more robust. This is because it is formulated in a
probabilistic manner that describes the problem globally in form of a so-called posterior
distribution. An optimization problem only results in one particular point estimate for
the parameters instead. The latter is prone to get stuck in local optima which might not
lead to satisfactory results.

The Bayesian calibration approach also allows for a more meaningful interpretation of
the calibration result. The posterior density can be explored using a sequential Monte
Carlo approach. This also allows for a convenient computation of the involved high-
dimensional integrals or point estimates such as the maximum a posteriori (MAP) esti-
mate. The posterior distribution gives rise to several further expressive point estimates,
uncertainty and robustness measures, which help to get a deeper understanding of the
parameters’ effect on the solution.

We have observed, that already for very few parameters, approximations, e.g., based
on point estimates as the MAP and the Laplace approximation, cannot live up to the
complexity of the resulting posteriors. Therefore, a full approximation of the posterior
appears to be a necessary approach to studied inverse problems. That allows to gain
further insight into the relevance of the parameters and the interaction of parameters
in the model. Thereby a better understanding of the computational forward model in
relation to the observed results of an experiment can be obtained.

To control the computational cost of the approach we proposed to build a Gaussian
process (GP) surrogate model on the log-likelihood. The computationally most expensive
step in the presented approach is the generation of the training data for the construction
of the GP surrogate. The required forward model evaluations can however be computed
in parallel and their exact amount is open to the analyst’s choice. By constructing the
log-likelihood surrogate, the approach is robust against single failing forward model eval-
uations, as it can be built on the remaining successful runs.

We presented and tested three different types of discrepancy measures between inter-
faces when no comparison of displacements of material points is possible. At first, an
Euclidean distance measure at selected measurement points at characteristic locations
on the interface was used. It is expected to be the easiest measure to apply to real data,
as no full representation of the deformed geometry is required. Second, we used closest
point projection distances for all interface nodes from the finite element discretization as
a comparative measure. Eventually, the RKHS norm measure led to the most expressive
posterior and is in general appealing because of its solid mathematical foundation and
flexibility. Nevertheless, all measures yielded suitable likelihood distributions. A proper
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choice should be made based on the characteristics and quality of the experimental data.
The choice of the distance measure is also dependent on the type of calibration task and
on the question of which aspect of the deformation the analyst wants to emphasize.

For the demonstration of our calibration approach, we chose the material parameter
identification of a spatially two-dimensional fluid—structure interaction (FSI) problem
including a homogeneous hyperelastic solid biofilm model. We used artificial reference
data such that we know the ground truth in order to be able to focus the attention on
the characteristics of the proposed approach. We showed that the point estimates in
the examples with two calibrated parameters were close to the ground truth x4 and
the approximation of the full posterior allowed to observe the strong coupling between
the input parameters in their influence on the posterior density. The posterior solution
allowed us to observe the interaction of the two parameters in the model which in the
present case was an almost linear relationship between E and v for which high posterior
densities occurred in this setting. We furthermore studied the influence of uncertain
experimental conditions on the posterior density. Such uncertainty led to a slightly flatter
and therefore less expressive posterior such that the variance of the posterior increased and
the posterior density filled the design space more equally. Besides the expected increase in
variance also the expectation and MAP estimate deviated. Compared to the previous case,
where the additional uncertainty was neglected, this shows that it is important to consider
existing uncertainties. Otherwise the posterior might be overconfident and might have
entirely different characteristics.

As a further example, we investigated a more complex calibration problem of a het-
erogeneous biofilm model with six unknown material parameters under uncertainty that
also included artificial measurement noise. In this challenging example, the MAP estimate
deviates more from the ground truth because the problem has more degrees of freedom
and additional uncertainty and noise. This example, that could not be solved at all for an
easier setting without uncertainty with a deterministic approach in [12], could be solved
and interpreted with the approach presented herein, hinting to higher robustness of the
presented approach.

While the examples have been chosen from a particular field of application, the approach
is general and can be applied to all sorts of single-field or coupled multi-field calibration
problems with given boundary or interface deformations, where boundary deformations
are available, but no point-to-point correspondence between simulation results and exper-
imental observations can be found. This means that the presented approach can be used
without limitations also for spatially three-dimensional models and more complex and
expensive forward models.

In high parameter dimensions, other methods like variational Bayes approaches or
multi-fidelity approaches such as [56] are promising alternatives.

Appendix

We present additional details for biofilm flow cell experiments, the continuum mechanics
description of the FSI problem, further details of RKHS properties and a brief description
of Gaussian processes in the appendix.
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Fig. 16 Schematic setup of a flow cell experiment with biofilms for measurement with optical coherence
tomography (OCT)

Flow cell experiments with biofilms and optical coherence tomography

This is a short introduction to flow cell experiments with biofilms. In a flow cell
experiment, the biofilm is grown on the bottom of a channel with a flowing liquid
that is providing nutrients to the microorganisms. The channel has dimensions like
50mm x 5mm x 0.45mm in recent experiments [15] or 124 mm x 2mm X 1 mm in
previous experiments [14]. An exemplary flow cell channel is depicted in Fig. 16 in top—
down view. To simplify the illustration only one single bigger patch of biofilm is drawn.
After a pronounced patch of biofilm is identified in the channel, a deformation experiment
is conducted with the specimen [14]. Such experiments are typical in biofilm research and
hence we use them for parameter identification. Parameter identification is known to be
very tricky for biofilms due to the soft consistency of the material and the necessity to keep
the biofilm material in natural conditions. In an deformation experiment, mechanical load
is applied onto the biofilm via the flowing liquid and then the deformation of the biofilm
domain is measured.

To obtain accurate measurements of the biofilm boundary in undeformed reference con-
figuration, the latter is first scanned using optical coherence tomography (OCT) without
a significant fluid flow through the channel. Subsequently, a fluid flow is introduced into
the channel at the inlet via a fluid pump, for which the volume flow rate can be controlled.
We are not simply transferring this to defined load on the biofilm surface, e.g., constant
shear stress, but take the full interaction between liquid and biofilm into account. This
means that the resulting fluid forces acting at the immersed biofilm boundary deform the
biofilm, which in return changes the surrounding fluid flow. This phenomenon is known
as fluid—structure interaction (FSI) or in this specific case as fluid-biofilm interaction
(FBI).

The deformed biofilm is then again scanned via OCT. OCT can only be done in a scan
window as sketched in Fig. 16. This is important information for our approach as it also
contributes to the uncertainty of conditions. This is because upstream and downstream
from the analyzed patch as well as in the attached tubes and inflow and outflow areas
there will be “invisible” and unregistered biofilm patches. The resulting snapshots of
the deformed and undeformed biofilm represent the data of the flow cell experiments. If
required, the experiment and snapshots are repeated for different flow settings or multiple
points in time. In the literature (e.g., [14,15,57]) one planar scan with OCT is labelled B-
scan as it is a combination of one dimensional A-scans along the flow direction. By a
combination of several B-scans to C-scans a three-dimensional volumetric representation
of the biofilm is measured. This type of image data can then be used in the presented
material parameter calibration approach.

Also due to the reduction of the whole channel to a planar view of a portion of the center
of the channel, the fluid inflow boundary conditions in the planar consideration becomes
prone to uncertainty. First, and as already mentioned, it is unknown if there are different
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unregistered biofilm patches upstream or downstream of the regarded domain. Practically
the inverse analysis and biofilm modeling will focus on the biggest biofilm patch in the
channel. Second, if the biofilm patch does not occupy the full channel width uniformly,
fluid flow will partly pass the biofilm and therefore the average fluid flow rate cannot be
assumed to flow over the patch. These considerations lead to the assumption that the
flow rate in the two-dimensional model is uncertain and this type of uncertainty must be
quantifiable in our approach.

Fluid-solid interaction approach for modeling biofilm mechanics

In this work we model the previously described fluid—biofilm interaction of the flow cell
experiments with biofilms as a coupled mechanical two-field problem. The experiments
can result in significant deformations, displacements and rotations of the initial biofilm
configuration, such that a nonlinear kinematic description of the biofilm displacement
field is required. The strong form of the associated differential equations for the fluid—
solid interaction are briefly summarized for the fluid domain, the solid domain and the
coupling of the two. For the sake of compactness, the presentation is limited to the field
equations. The respective boundary conditions are implicitly assumed to be well defined.
The interested reader is referred to the literature (e.g. [58,59]) for a methodological discus-
sion of fluid—solid interaction models and their numerical discretization with a monolithic
arbitrary Lagrangian—Eulerian (ALE) approach.

Continuum description of the fluid field

The fluid field in the channel is well described by the incompressible Navier—Stokes equa-
tion for Newtonian fluids. We apply an arbitrary Lagrangian—Eulerian (ALE) description,
which uses a moving fluid mesh and accounts for the resulting mesh displacements and
velocities in the fluid domain, due to compatibility with the moving solid domain. The
velocity of the fluid relative to the fluid mesh is then expressed by the ALE convective
velocity cf. The fluid equations in ALE formulation read as

vk ,
,OFa—Vt + pF (e - VE —2ufV.e(vF) + VpF = prF inQf x (0, 7) (17a)

vt =0 inQf x (0, 7). (17b)

Wherein the variables of interest are the fluid velocity v, the fluid pressure pF, the fluid
density pF, the fluid dynamic viscosity uf and the body force b in the fluid domain
QF x (0, T). The strain rate tensor €(vF) in (17) furthermore expands to the expression

€(F) = % (wF n (VVF)T). (18)

Continuum description of the solid field
In this work, the biofilm is modeled as a nonlinear solid. In the solid domain, the continuum
field is described by the nonlinear balance of momentum in reference configuration
2 1S
gdd

S .
Po~qpz = Vo-(F - 8) + pgbo in Q(S) x (0, T). (19)

Here, the solid displacements d® are used as primary variable. The other quantities are
the deformation gradient F, the second Piola-Kirchhoff stress tensor S and the body
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. . 2S . . S .
force in reference configuration b . pg is the solid density in reference configuration. The
balance equation is formulated for the initial structure domain in reference configuration
Q5 x (0, 7).

Fluid-solid interface and coupling

The coupling of the fluid domain and the solid domain is achieved by the interface condi-
tions on the fluid-solid interface I'™S x (0, T'). Here, the balance of tractions hlsi between
fluid and solid phase and a no-slip interface condition on the respective primary variables

need to hold
= —th~ onTFS x (0, T), (20a)
ad®
- = vE onTFS x (0, T). (20b)

Consequently, in Fig. 2 the initial biofilm interface is labeled F(};,s which is the same as the

interface in reference configuration.

Numerical discretization of the fluid-solid interaction problem

For all of the discussed problems in this article, the numerical discretization of the govern-
ing equations is conducted with the finite element method (FEM). We use a monolithic
approach to solve the coupled FSI equations in ALE formulation [58,59], as the approach
was shown to be well suited for biomedical problems of similar type [60] and has also been
applied in the biofilm setting before [61].

Reproducing Kernel Hilbert space details
The reproducing kernel property implies that the inner product of the kernel and a function
reproduces the original function, according to

fO) = fx), k(x, y))n. (21)

The kernel k(x, ) must be a positive definite function and is unique for the associated
RKHS. For our investigations we furthermore require the kernel to be symmetric such that
k(x,y) = k(y,x), with k(-, y) € H. Symmetry allows us to interpret the kernel function
as a correlation function in a statistical sense, which is commonly done in probabilistic
machinelearning [39,53]. A kernel can be generated by an associated feature map ¢ : X —
‘H inthe sense of k(x, y) := (¢(x), §(¥)) . The feature map ¢ can be an infinite dimensional
vector, or an infinite series, respectively. Often, only a resulting valid reproducing kernel
k is known and the associated feature map ¢ remains unknown (kernel trick). Loosely
speaking, a desirable property of an RKHS is that a small value of the inner product of the
distance function d implies also point-wise closeness of associated functions £ and f, [22,
62]. The choice of kernel function encodes the smoothness and complexity assumptions
about the underlying functions in the inner product. The latter are usually given in a
discrete point representation and the continuous function is represented via the kernel
function according to the well known representer theorem, which directly demonstrates
the interpretation of the kernel as basis functions for the underlying function or curve

f =) aik(,x). (22)
i=1
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Therefore it can be represented by linear combinations with factors «;. An extensive
overview of common kernels and kernel algebra can be found in [53]. We only briefly
demonstrate the radial basis function (RBF) kernel, which results in smooth, infinitely
differentiable functions and is also used in our investigations

2
k (%, y) = exp <—M> ‘ (23)

2
20y

The RBF kernel with variance J\%(/ describes a mapping R”*” — R, such that it is treated
as a scalar k(x, y) in the following. After the presentation of the general concepts of inner
products in RKHS, we will now discuss possible definitions of distance measures. For the
sake of simplicity, we investigate two-dimensional parameterized curves f (s), but the con-
cepts generalize easily to three spatial dimensions and parameterized representation of
surfaces. An arbitrary curve can be fully described by the parameterized vector represen-
tation in (24a). We can calculate the unit-normal vectors of the curve by differentiation
w.r.t. the parameter s as demonstrated in (24b).

&) = [gts) )] (242
ny(s) = ! — dhs) dg—“)]T (24b)

s\ | (dgw)\ - B "
S S
() + (42)

Given the parameterization in (24a) a natural choice for a distance is given by the inner

product
Dy = (dy, dy), (25a)

d 2
with k (£1,f5) = exp (—%) : (25b)

\\4

In contrast to the closest point projection or Ly norms, inner products in RKHS correlate
all discretized points of curve f; with all discretized points of curve f,, such that it is not
important to identify specific point pairs for which the measure is calculated. While, (25a)
is a valid distance measure, it might not account enough for different complexities of f;
and f', if the overall distance in the Hilbert space is small. This is why we do not follow
this approach in this paper.

To put more emphasis on the difference in functional complexity, one can incorporate
derivatives of the curves in the measure. Hence, another special choice of distance mea-
sure, that will also be used in this paper, can be constructed with the difference in the
vector function of the normal vectors ny, and ny, from (24b), instead of the difference of
the functions themselves.

Brief presentation of used Gaussian process regression model

A Gaussian process (GP) is fully defined by its mean function m (x) and a correlation
function k (e, ®) (or kernel, see, e.g., [39,53]) and describes a distribution over functions
f(®), such that for a fixed &, the function value f (%) is normally distributed according to
f(®) ~ N (flm (&), ks (& &)). A realization of a Gaussian process (GP) can be written as

f@) ~GP (m ),k (). (26)
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As the name suggests, the mean function m (x) represents the statistical mean for an
infinite amount of function realizations f;(x). The kernel or covariance function k (x, x/ )
encodes the correlation of two function values f(x) and f (') at different inputs x and «’.
In analogy to the RKHS, the choice of kernel hence encodes smoothness, complexity and
characteristics assumptions of the underlying function.

In case we did not account for any data D = {Xirains ¥irain) i (26), this expression can
be interpreted as the so-called prior GP. The specific selection of m (x) and k (x, x’) can
be used to integrate prior knowledge when GPs are used for regression tasks. In this work
we will restrict the considerations to a constant prior mean function m (x¥) = const.

Remark 10 (Prior mean for logarithmic likelihood) For our application, the prior mean
function m (x) cannot be neglected, i.e., set to zero, as the log-likelihood for Bayesian
calibration (5), that we want to build the regression model for, cannot just randomly
be set zero, as then the associated likelihood tends towards a finite value (~ exp (0))
far away from the training points ®y,in;. Strictly the log-likelihood should tend towards
negative infinity for irrelevant regions, which is unfeasible, so that the likelihood tends
towards zero. Therefore we define an auxiliary mean that is lower than any occurring
log-likelihood in the training data m () = min (L¢rain) — 1.0 - (max (Lerain) — min (Lirain))
with the log-likelihoods £ain as training outputs.

In this work we choose a Matérn 3/2 kernel function [39,63,64] for the regression
model of the log-likelihood function. In contrast to the infinite differentiable radial basis
function kernel used in (23), the Matérn 3/2 kernel is a one time differentiable covariance
function [39] that does hence result in samples f(x) with lower smoothness requirement.
As the log-likelihood might potentially be peaked in areas with high posterior probability
density or might also evince abrupt functional changes, we want to relax the smoothness
requirements on the regressor. The Matérn 3/2 kernel function is defined as

ﬁ oA \/g N
KMatern,n=3/2 (x, x/) = 01(2 (1 + M exp —M . (27)
K K

The hyper-parameters 6> and /i control the magnitude of the covariance and its length
scale, respectively.

Typically there is training data D = {Xirains Yirain) @vailable and the prior GP can be
conditioned on D to yield the posterior GP, whose posterior mean function f;(x) is
then used as a regression model. Training data are input—output pairs of values that are
known or can be determined systematically. The posterior variance function V [ *] (x4)
serves as a measure for the uncertainty in the regression model. Here it is assumed that

T
Virain = [yl, s y,,tmm] consists of nin scalars (log-likelihood £irain in the presented

Mtrain
i=1
model parameters X,y in presented approach). The test point x, denotes a new input

approach) at potentially vector-valued training inputs Xrain = {%train,;} (forward

for the prediction of the regression model. The posterior mean and variance function can
be calculated from the prior GP and the training data D using the following expressions
[39]

f* = kl- (K + GI%I)_1 (ytrain - m)’ (28a)
V[£] = ke (0 24) — kLK ks (28b)
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In (28) we use the abbreviations K = k (Xtrain, Xtrain) for the covariance matrix at training
inputs and the vector ki = k (Xtrain, #+) for kernel evaluations at test point and training
data. m is a vector of suitable length n,in populated with the constant prior mean m (x)
in all entries. The so-called nugget noise variance o2
GP [39].

The optimization of the so-called marginal likelihood or evidence of the GP w.r.t. the

is used for numerical stability of the

hyper-parameters akz, I in (27) is known as the training of the Gaussian process. The
log-marginal likelihood expresses the likelihood of the training data under the chosen
model parameterization and it is given by

—logp (D|O’k2, lk) =

1 T 1 Mo
= 5 Gain = M) K" (yain — m) + 5 log K| + = log 27

(29)

For numerical reasons one usually minimizes the negative log-marginal likelihood instead
of maximizing the marginal likelihood directly.
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