Freeman Adv. Model. and Simul. in Eng. Sci. (2022) 9:19 Advanced Modeling and Simulation
https://doi.org/10.1186/540323-022-00232-w . . . .
in Engineering Sciences

RESEARCH ARTICLE Open Access

A : : ®
A multi-point constraint unfitted finite iy

element method

Brubeck Lee Freeman’

*Correspondence:
freemanbl@cardiffac.uk Abstract
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the Poisson equation is presented. Key features of the approach are the strong enforce-
ment of essential boundary, and interface conditions. This, along with the stability of
the method, is achieved through the use of multi-point constraints that are applied to
the so-called ghost nodes that lie outside of the physical domain. Another key benefit
of the approach lies in the fact that, as the degrees of freedom associated with ghost
nodes are constrained, they can be removed from the system of equations. This ena-
bles the method to capture both strong and weak discontinuities with no additional
degrees of freedom. In addition, the method does not require penalty parameters and
can capture discontinuities using only the standard finite element basis functions.
Finally, numerical results show that the method converges optimally with mesh refine-
ment and remains well conditioned.
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Introduction

Over the last two decades unfitted finite element methods (UFEM), that allow the use
of relatively simple background meshes, have proved to be useful tools for solving par-
tial differential equations (PDE) on domains that may be highly complex and may evolve
with time. Under the umbrella of unfitted finite element methods, a range of approaches
and techniques have been developed including the generalised finite element method
(GFEM) [1-11], extended finite element method (XFEM) [12-18] and cut finite element
method (CutFEM) [19-25].

The generalised and extended finite element methods (GFEM and XFEM) are parti-
tion of unity methods [26, 27] that employ additional functions, or enrichments, to cap-
ture solution features, such as strong and weak discontinuities, internal to the elements.
The enrichment functions are often chosen a priori based on the physics being simu-
lated, though they may be calculated on the fly numerically, as seen in the global local
GFEM [5]. In the work of Hansbo and Hansbo [19, 20], referred to as the phantom node
method [28] or as the cut finite element method (CutFEM) [21], a different approach
was taken. Instead of employing enrichment functions to capture discontinuities, their
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approach can be described as replacing any element crossed by a discontinuity that
splits the element into two parts, €21 and Q29 with two overlapping elements 77 and T5.
The new elements are each assigned to a part of the divided element and introduce
additional nodes (termed phantom or ghost nodes), allowing the use of standard basis
functions. This leads to a continuous solution in each element, 1 and uy, whilst their
supposition allows for a discontinuous solution in the physical domain (defined as
u=ummVx € Q1 Au=uyVx € Q). In each of these methods (GFEM, XFEM and Cut-
FEM), the enrichments are associated with element nodes. An alternative approach is to
associate the enrichments directly with the discontinuity itself, as seen in the discontinu-
ity enriched (DEFEM) [29, 30] (see also the interface enriched method [31, 32]) and the
element enriched finite element method (EFEM) [33-39].

Whilst UFEMs generally introduce additional degrees of freedom (dof) in order to
capture solution features, approaches have been developed for UFEMs with the same
number of unknowns as the standard finite element method (FEM). In EFEM models,
a number of authors eliminate enriched degrees of freedom at the element level, often
employing static condensation that increases the computational efficiency [33], at the
cost of inter-element continuity. In addition, GFEM and XFEM models have been pro-
posed that capture discontinuities with no additional degrees of freedom, namely con-
densed GFEM [8, 11], dof-gathering GFEM (7] and intrinsic and improved XFEMs [10,
14, 15, 40]. In these approaches, special enriched shape functions are employed that are
constructed using least squares [8] or moving least squares [14, 15] over local patches of
nodes. Bybordiani et al. [17] presented a multi-layered XFEM model for fracture propa-
gation. In their approach, the discontinuities are enriched using independent layers,
where each layer enriches a certain neighbourhood of cracked elements, defined using
an active length scale parameter, 14. The size of the layers is bounded by limit cases of
infinite and zero active lengths, recovering the XFEM and EFEM approaches respec-
tively. Enriched degrees of freedom are eliminated using a condensation at the layer
level.

A key challenge associated with UFEMs is the enforcement of essential boundary
conditions on boundaries that are internal to the elements [41]. The most commonly
used approaches employ a weak imposition of such conditions using the penalty method
[42], Nitsche’s method [19-21, 43, 44] and the Lagrange multiplier method [21, 45, 46].
The penalty method is easy to implement but is known for its propensity to degrade
the condition number of the system; whilst the Lagrange multiplier method introduces
additional unknowns that need to be defined in a suitable space to fulfil the inf—sup con-
dition [45, 46]. Nitsche’s method is a consistent penalty method, and as such does not
degrade the condition number in the same manner as the penalty method [43]. An alter-
native approach to such methods, is to modify the element basis such that the bound-
ary conditions are imposed exactly, as seen in the implicit boundary method [47]. In
their model, van den Boom et al. [30] strongly enforced essential boundary conditions
by constraining enriched nodes using multi-point constraints that are applied at the ele-
ment level. In the cut-cell model presented by Pande et al. [48], exterior (ghost) nodes
were constrained in a similar manner. The key difference being that in their work, these
constraints replaced the governing equations for ghost nodes in the global system of

equations.
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An additional challenge for UFEMs lies in the fact that interfaces/boundaries may
cross the underlying mesh arbitrarily. Whilst this is the key strength of such meth-
ods, the presence of degrees of freedom with small support in the physical domain
can lead to stability issues. To counteract such issues, and to ensure so-called ‘cut
element stability, a number of approaches have been employed such as cell aggre-
gation [49, 50], ghost penalties [21, 24, 51] and coupling constraints [44, 52]. The
cell aggregation technique merges elements with small support to adjacent elements
within the domain and is particularly suited to non-conforming finite element meth-
ods. The ghost penalty approach introduces a penalty on the jump in the normal
derivative of the solution across element faces, weakly enforcing greater solution
continuity. In the coupling constraints approach, degrees of freedom with small sup-
port are coupled to degrees of freedom in the interior using constraint equations
derived from the finite element basis functions. An alternative to stabilising ‘cut’ ele-
ments is to avoid cutting the elements, as seen in the CutFEM model of Lozinski
[23]. The shifted boundary method (SBM) introduced by Main and Scovazzi [53]
(see also the shifted interface method (SIM) [54], and shifted fracture method (SFM)
[55]), was introduced to avoid ‘cut’ elements whilst maintaining optimal conver-
gence rates. In this approach, the boundary conditions are modified and shifted to a
surrogate boundary that is formed from the nearest element edges/faces to the true
boundary, before being imposed with Nitsche’s method.

In the present work, the method proposed by Hansbo and Hansbo [19] is adopted
for the unfitted finite element approximation. For the enforcement of essential
boundary, and interface conditions, as well as cut element stability, multi-point con-
straints are employed. Constrained degrees of freedom are then removed, which
leads to a global system of equations capable of capturing strong and weak disconti-
nuities with no additional degrees of freedom.

The innovations of this work are (i) a new unfitted finite element model that, for
the first time, strongly enforces essential boundary conditions, interface conditions
and cut element stability using multi-point constraints, (ii) an approach to captur-
ing strong and weak discontinuities in the solution with no additional degrees of
freedom, avoiding the need for penalty parameters and using only the standard finite
element basis functions and (iii) a numerical investigation of the performance of
the model including mesh convergence and conditioning and its comparison to the
model of Hansbo and Hansbo [19] and a standard FEM.

The remainder of this paper is organised as follows,

+ “Problem formulation” presents the Poisson problem, including the case of a bi-
material problem,

+ “Unfitted finite element formulation” presents the unfitted finite element approx-
imation and the multi-point constraint approach to enforcing essential boundary
conditions, interface conditions and cut element stability,

« “Numerical examples” presents the application of the method to four example
problems and its comparison to known analytical solutions,

« “Concluding remarks” presents some conclusions of the work.
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Problem formulation

The present work is concerned with the solution of the Poisson problem that reads:

—V-@Vu)=f inQ,
u=g onlp, 1)
Vou=h onTn

where Q € R? is the problem domain with boundary €2, I'p and I' i are the parts of the
boundary to which essential (Dirichlet) and Neumann boundary conditions are applied
respectively and # is the outward facing unit normal to the boundary.

Equivalently, in the case of a bi-material problem, the problem reads:

2
=Y V-@Vu) =f inQUQ,
i=1

u=g on FD, (2)
Vou=h onTyp,
[ul=j onTy,

[aV,ull =k onT;

where [[x]] = x2|p, — x11r, is the jump operator, where x; = x|g, is the restriction of x to
Q;, and I'; is the material interface.

Unfitted finite element formulation

Unfitted finite element approximation

In the present work, the unfitted finite element method proposed by Hansbo and
Hansbo [19] is employed. An example of this approach for a 1D problem with an inter-
face is illustrated in Fig. 1. The coupling of the solutions in each overlapping element is
determined by the interface conditions that are typically weakly enforced using Nitsche’s
method [21].

The finite element mesh is given by first defining a uniform background mesh, to
which the physical domain is embedded. Following this, any elements that have zero
intersection with the physical domain are removed, such that the computational mesh,
Ty, is given as:

u€.(21
o :\\:u\eﬂ.z 3
0—91—0—%—0 5
| Q,
o—i o o
8 .. .

Fig. 1 (1) Original finite element mesh crossed by an interface, (2) Two overlapping finite element meshes
with introduced ghost nodes (open circles), (3) Numerical solution where solid line indicates solution within
the physical domain and the dashed line is the solution outside (after [51])
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Th:{Te T,?‘THQ#Q} 3)

where T denotes an element in the mesh and T;? is the background mesh.

This process is illustrated in Fig. 2, where it can be seen that the computational domain,
2y, extends beyond the physical domain.

In the present work, the level set method is used to describe the domain boundary and
material interfaces, and Q4 elements are used throughout. The boundary and interfaces are
discretised using piecewise linear segments within each element.

Applying this approach to the Poisson problem, and integrating by parts over the compu-
tational domain, the weak form is given as:

Find u € H' (), such that:

/Vva.Vu—I-/ V~V,,u=/vf—|—/ vh, Vv e HY(Q) (4)
Q I'n Q I'n

where u is the solution vector and v are the test functions.

Employing the Galerkin weighted residual method for spatial discretisation gives:

Ku=F
(5)
where the primary variables are interpolated from the nodal value, i.e. u = Nu, where N
is the vector of shape functions.
The global system matrix and right hand side vector are given as:
K=A, < / VNTaVN + NTV,,N>
Qe

I'Ne

F:Ae</QeNTf+/rNeNTh>

where A, is the element assembly operator.

/,/ \‘ ,l \‘\
/ \ / \
\ / \ /
s S NS S

Fig. 2 (Left) A simple background mesh into which the physical domain is embedded, (right) the resulting
computational mesh
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An important aspect of Eq. (4) is that the divergence theorem is applied over the
computational domain. This leads to a flux term associated with the boundary of
the computational domain, 9$2;,. This term does not appear in (4) as the degrees of
freedom to which it applies, i.e. those that lie on 9€2j, are constrained and therefore
are removed from the global system of equations. In addition, the integrals found in
(4) are carried out over the physical domain that does not conform to the computa-
tional mesh. This implies that special integration rules are required for integrals over
elements intersected by the problem boundary and/or interfaces (so-called cut ele-
ments). In the present work, volume integrals are carried out through the subdivi-
sion of cut elements into integration elements, to which the standard Gauss rule is
applied; whilst surface integrals are taken over the piecewise linear approximation of
the boundary and/or interfaces. A depiction of the subdivision can be seen in Fig. 3,
where the shaded area indicates the physical domain.

Before describing the approach to enforcing constraints, the sets of nodes to which
they are applied are first defined. Let Ip, = {i € I|x; € 22;,\2} be the set of global ghost
nodes, where [ is the global set of nodes and «; are the coordinates of node i. The set
of ghost nodes to which essential boundary conditions are applied is
Ig[])q Cly = {i € Igh|x,' € T;? A |x,' —xf)| <(1- )v)h}, in which, Tlf is the set of ele-
ments that contains a part of the boundary to which essential boundary conditions
are applied, xlp are the coordinates of the projection point for node i (to be introduced
in following Section), % is the element size, 1 is a user defined parameter and ||
denotes the Euclidean distance. The last condition given in the set arises as the result
of an assumption introduced to ensure boundedness of the solution, following the
approach of Pande et al. [48]. The assumption is that any node at a distance d < ik
from the boundary in fact lies on the boundary. As a result, the essential boundary
condition is applied directly to such nodes, and multi-point constraints are not uti-
lised for those points on the boundary. The set of ghost nodes to which interface con-
ditions are applied can be defined similarly as
Iéh Cly = {i € Igh’xi € T;; A ’xi —xﬂ <(1- i)h}, where T;; is the set of elements
that contain a material interface. Finally, the set of nodes that are constrained to
ensure cut element stability can be defined as IgChE = {i € Igh|i ¢ IgDh ANig Iglh}. In the

present work, the parameter 4 was set to 0.001 throughout.

A}
v T A Iy
® Regular node O Ghost node @ Integration point

Fig.3 A Q4 element crossed by a boundary showing the subdivision integration



Freeman Adv. Model. and Simul. in Eng. Sci. (2022) 9:19 Page 7 of 22

Essential boundary conditions

The approach for enforcing essential boundary conditions follows the approach van den
Boom et al. [30], and employs the interpolation of Pande et al. [48]. Following the approach
of Pande et al. [48], a projection of the ghost nodes onto unique points on the physical
boundary is employed. Four-noded bilinear elements (Q4 elements) are used for the pre-
sent work, which implies that there may be either one, two or three ghost nodes. For a
single ghost node, the projection is onto the centre of the boundary segment within that
element, whereas for two ghost nodes the projection is onto the points of intersection of
the boundary segment with the element edges. Finally, for three ghost nodes, a combina-
tion of the projections for a single and two ghost nodes is used. A depiction of the problem
can be seen in Fig. 4, where € indicates the physical domain and the projection points are
indicated by the crosses. Once the projection is established, the essential boundary condi-

tion is given as:
g, y) =N y)ue (7)

where 1, is the vector of element nodal values.

In the work of Pande et al. [48], this condition replaces the equations for the ghost nodes
in the system of equations. In the present work, the approach of van den Boom et al. [30] is
followed and (7) is employed in the form of a multi-point constraint:

W' = —A7'BuL + AT'G ®)

where u‘gh and u], are the vectors of degrees of freedom associated with ghost and regular
nodes respectively, G is the vector of prescribed values and A and B are the matrices of
shape functions of ghost and regular degrees of freedom respectively, evaluated at the
projection points. Using (8), the element matrix and right-hand side vector are modified
as follows:

K, = T|K,Tp

T % (9)
Fe =T (Fe — K.GT)

where Tp is the transformation matrix that contains the contributions of the regular
degrees of freedom to the ghost nodes, and G is comprises the prescribed values.

2,

v
r

(Y S
® Regular node O Ghost node ® Projection point

Fig.4 A Q4 element crossed by a boundary showing the three possible cases
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Finally, T; = §;Vi € n, A T; = OVi € ng,, where n, is the set of local regular nodes
and 7y, is the set of local ghost nodes, is used to eliminate the ghost nodes from the
system of equations.

In the reduced matrices described in (9), the boundary conditions are strongly
enforced.

To illustrate the procedure, consider a Q4 element crossed by a boundary such that
there are three ghost nodes (see Fig. 4), subject to essential boundary conditions. In

this case Eq. (8) becomes:

iy No(@r,p1) Nawr,pn) Naryn) ]~ [ NuGeoyn)
uz | = — | Na(x2,52) N3(x2,y2) Na(x2,y2) Ni(x2,92) | [u1]
Uy Na(x3,¥3) N3(x3,y3) Na(x3,3) Ni(%3,93) (10
N (x1,¥1) N3(x1,¥1) Na(x1,y1) ! 1
+ | Na(x2,92) N3(x2,¥2) Na(x2,¥2) &2
N> (x3,y3) N3(x3,73) Na(x3,%3) 8x3

where the coordinates correspond to the projection points. The non-zero terms of the

transformation matrix become:

Tpin =1

Tpo1 = A Bi + A}y By + A Bs
Tps1 = Ay B + Ay By + Ayy Bs
Tpa1 = A3 By + A3y By + A3 Bs

whilst the terms of the vector of prescribed values read:

Gra = Ay ga + Aleng + Afslng
Grs = Ay g + A5 g2 + Ay s (12)
Grs = Agllgxl + Agzlng + A?:o,lng

Interface conditions

The approach to enforcing interface conditions follows the same procedure as that for
enforcing essential boundary conditions. The key difference is that now jump condi-
tions are enforced, in both the solution itself and in the solution gradient. In addition,
in this case the number of ghost nodes is always equal to the number of nodes of
the element, irrespective of how the discontinuity crosses the element. In the pre-
sent case as Q4 elements are employed, there are four ghost nodes. As before, the
approach begins with a projection of the ghost nodes onto the physical interface. The
projection points are at the points of intersection between the boundary segment and
the element edges. A depiction of this can be seen in Fig. 5, where €2 and €25 indicate
the physical domain on the positive and negative sides of the interface respectively
and where it is noted that at each projection point, both interface conditions are eval-
uated. Once the projection is established, the interface conditions that depend upon

the problem considered are given as:
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N
O
j'r
AN
o,
\ I

® Regular node O Ghost node ®  Projection point

Fig. 5 A Q4 element crossed by an interface, showing the three possible cases, where the arrows indicate
coupled overlapping elements

j@y) = [N @y

hy) = [ VaNT e (13)

The first equation in (13) enforces the condition on the jump in the solution, whilst the
second enforces the condition on the jump in the solution gradient. Using (13), the same
procedure as before is followed that leads to reduced matrices, in which the interface
conditions are strongly enforced. In this case, the matrices A and B (see Eq. (8)) are of
shape functions and shape function derivatives of the ghost and regular nodes respec-
tively, evaluated at the projection points, and G (Eq. (8)) is the vector of the prescribed
jumps in both the solution and in the solution gradient.

To illustrate the difference to enforcing essential boundary conditions, consider a Q4
element crossed by a boundary such that there are three ghost nodes associated with €2,
and one ghost node associated with € (see Fig. 5), subject to the interface conditions
described in (13). In this case, Eq. (8) becomes:

1 1 .
Lt2 ul Jxl
3 1| —1| ha
l=-a"B| 2|4t} (14)
uy us ]};62
u% MAZL %2

where the superscript denotes the domain (i.e. u’l € ;) and the matrices are given as:

Nj(x1,91)  Ni(x,y1)  Nio,y)  —Ni@ny)
VNS (61,91) VuN3 (01,91) VuNj (x1,91) —VuNE(x1,91)
Nj(x2,92)  N3j(x2,92)  Ni(xa,y2)  —Ni(x2,%2)
VN (%2,52) VN3 (%2,¥2) ViuNj (x2,52) —VuNE (%2, 52)

(15)
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Ni@,y)  —Nixuy1) =N,y  —Nixny)
VN (x1,91) =VuNZ (1, 91) —VuNE(x1,51) —VuNZ(x1,91)
Nl (x2,2)  —N}(x2,92) —N3(x2,52)  —NZ(x2,92)
VuN{ (2, 52) —VuN3(x2,¥2) —VuNZ(%2,2) —VuNZ(x2,2)

(16)

The terms of (14) can then be used to define the transformation matrix and vec-
tor of prescribed values as before. The only difference being their dimension is now
doubled as the transformation is now applied to the two overlapping elements. The
resulting reduced matrices have the same dimension as a standard element.

Cut element stability

Stability issues associated with cut elements arise from the fact that some of the
degrees of freedom have very small support in the physical domain. This can lead to
severe ill-conditioning of the system of equations and can have a detrimental affect
on convergence [50]. In Riberg et al. [44] (see also Hollig et al. [51]); stability was
ensured through coupling degrees of freedom with small support to degrees of free-
dom within the interior of the domain using constraints.

In the present work, all degrees of freedom that lie outside of the physical domain
(ghost degrees of freedom) are constrained. The ghost degrees of freedom are then
removed from the system of equations. Before describing the approach, it is empha-
sised that this type of constraint is only applied to ghost nodes that are not already
constrained by either essential boundary, or interface conditions.

The first step in the approach is, for all eligible ghost nodes, the nearest element,
Ty, that lies entirely within the physical domain is found. Following this, the con-
straint equation is evaluated as:

u®(x,9) = N7 (x, y)ue — fd* (17)

where the vector of shape functions and nodal values are those associated with T}, and
d is the distance to the centre of T}, from the centre of the nearest element to which #£"
belongs. A key thing to note about (17) is the fact that the shape functions are evalu-
ated at the ghost node location that lies outside of the reference element. In the present
work, the shape functions that are used in (17) use global coordinates, and as such their
evaluation outside of the reference element is straightforward. The last term in (17) is
included in order to account for the effect of the source term on the extrapolation.

Using (17), we can follow a similar procedure to before that leads to reduced
matrices within which, the constraints are strongly enforced. A key difference is the
fact that constraints of the type described in (17) lead to a larger support size and as
such, the constraints are applied in the system assembly rather than at the element
level.

To illustrate the procedure consider the two elements in Fig. 6, the first of which
lies completely inside the physical domain, whilst the second is crossed by the
domain boundary. In this case the nearest element interior to the domain has been
identified and will be used to constrain the degree of freedom associated with the
ghost node,gh.
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® Regular node O Ghost node

Fig. 6 lllustration of cut element stabilisation, the degrees of freedom at gh are coupled to those associated
with the nearest element interior to the domain, Ty, as indicated by the arrows

Numerical examples

In this section, example problems are presented in order to demonstrate the per-
formance of the model. The example problems concern the three cases of unfitted
elements, namely, an unfitted Neumann boundary condition, an unfitted interface
(considered with both a weak and a strong discontinuity) and two cases with unfit-
ted essential boundary conditions on a curved boundary. In each case, the numeri-
cal solutions are compared to known analytical solutions and the mesh convergence
and conditioning of the system are investigated. In addition, in the second example
the predictions of the proposed model are compared to those of Hansbo and Hansbo
[19], as well as those of a standard FEM.

Heat conduction with unfitted Neumann boundary condition

The first example concerns heat conduction in a rod with a source term subject to
fixed temperature on the left hand side of the specimen and an unfitted Neumann
boundary condition on the right hand side of the specimen. The equation describing

this example reads:

—Au = 10,
u(0) =0, (18)
V,1(0.95) = 0

where the physical domain is Q2 = (0,0.95) and the background mesh domain is
Q;; = (0, 1.1). The analytical solution is given by:

u(x) = —5x> 4+ 9.5x (19)

An example of one of the meshes used in the analysis that shows the boundary
marked with a black line, can be seen in Fig. 7.

The performance of the model with mesh refinement can be seen in Fig. 8, that
shows the L,-norm of the error, e = ||[u — uey ||z, [48], where u,, is the exact solution,
along with the 2-norm condition number. From the figure, it can be seen that the
method converges optimally (i.e. of the order h?) and that the system is well condi-
tioned (i.e. of the order h™2).
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Fig. 7 Finite element mesh used in the analysis and unfitted boundary

1.E+02 LE+06
1.E+01 1.E+05
S 1E+00 T 104
o 1.E-01 £
£ 2 1.E+03
% 1.E-02 S
c - £ LE+02
= 1.E-03 T
2 & 1.E+01
T LE-04 Num © Num
1.E-05 — —0(h"2) 1LE+00 | __ — 0(h"-2)
1.E-06 1.E-01
0.005 0.05 0.5 0.005 0.05 05
Mesh size h Mesh size h
Fig. 8 Plot of the L,-norm of the error and 2-norm condition number
l—4.59+00
L > 3
._0,0e+00

.

T

X

Fig.9 Elevation of the numerical solution

The solution for the finest mesh can be seen in Fig. 9.

In addition to investigating the error and condition number under mesh refine-
ment, this example was also used to investigate the effect of the boundary location
with respect to the element edges (see Fig. 10). To this end, the mesh with # = 0.061
was employed and the condition number calculated for a range of boundary loca-
tions. The results of this investigation can be seen in Fig. 10, which shows that the
system remains well conditioned when cut element stabilisation is employed. By con-
trast, when stabilisation is not employed the condition number deteriorates at a rate
of the order d !, as reported in [44].
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1.E+06 d
Stabilised <
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8 1E+05 netabiise L @
= 0(dA-1) 1
=1 |
<
c 1.E+04 1
S 1
B
k] |
& 1.6+03 |
© |
1
1.E+02 ® T O
0.0002 0.002 0.02 |

Distance to between boundary and
element edge d

Fig. 10 Plot of the 2-norm condition number for different boundary locations and schematic showing
unfitted boundary and distance to element edge d

This example indicates that the method performs well for unfitted Neumann boundary
conditions, and for arbitrary intersections between the boundary and underlying mesh.

Poisson interface problem with unfitted weak and strong discontinuity
The second example considers the solution to the Poisson interface problem as pre-
sented in Hansbo and Hansbo [19], subject to essential boundary conditions:

2
- Z V- (a;Vu) =1,

i=1
[x(1/2)]] =0, (20)
[aVu(1/2)] =0,
u(0) =0,
u(l)=0

where the physical and background mesh domains are Q = €, = (0, 1). The interface
is unfitted and located at x = 1 / 2,and a; =1 / 2 and a = 3. The analytical solution if

given by:
(Bar +ax)x  x?
)= ——————,
day + daray  2am @)
ar —ay + (3ay + ax)x x2
uz(x) = -

4{1% + 4aiay 27;2

An example of one of the meshes used in the analysis that shows the interface marked
with a black line can be seen in Fig. 11.

The results of the convergence test can be seen in Fig. 12, whilst the solution for the
finest mesh can be seen in Fig. 13. From the figure, we can again see that the method
converges optimally and remains well conditioned.

A comparison between the results of the present method, the method of Hansbo and
Hansbo [19] and the standard FEM (taken from [19]), both with a fitted and unfitted mesh,
can be seen in Fig. 14. It can be seen from the figure that the performance of the proposed
approach is comparable to both that of Hansbo and Hansbo [19] and that of a standard
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Fig. 11 Finite element mesh used in the analysis and unfitted interface
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FEM when an interface fitted mesh is employed. The results show that the standard FEM
with an unfitted interface does not show optimal convergence, and as such finer meshes
would be required to achieve the same level of accuracy.

In addition to simulating the problem as presented in Hansbo and Hansbo [19], a modi-
fied form with a strong discontinuity is also considered. In this case the interface and

boundary conditions become:
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[u(1/2)] = 0.02,
[aVu(1/2)]] =0,
u(0) =0,

u(l) = —0.02

Whilst the analytical solution reads:

uy(x) =

uz(x) =
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L,-norm of the error
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Fig. 16 Elevation of the numerical solution
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The results of the convergence test can be seen in Fig. 15, whilst the solution for
the finest mesh can be seen in Fig. 16. From the figure, it can again be seen that the
method converges optimally and remains well conditioned.

A comparison of the convergence of the approach as compared to the standard
FEM with an unfitted mesh can be seen in Fig. 17. It can be seen from the figure that
the standard FEM does not converge optimally, and that the error actually increases
with further mesh refinement. A comparison between the predicted solutions and
the analytical solution can be seen in Fig. 18. From the figure it can be seen that the
proposed model predictions are coincident with the analytical solution, whilst the
standard FEM is unable to capture the jump in the solution. It is noted that in this
case the standard FEM with an interface fitted mesh would also suffer from sub-
optimal convergence due to jump in the solution that would require the use of inter-
face elements to be captured.

This example indicates that the method performs well for unfitted interface prob-
lems with both weak and strong discontinuities and is comparable with the perfor-
mance of the model of Hansbo and Hansbo [19].
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F

g. 19 Finite element mesh used in the analysis and unfitted boundary
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Poisson problem on circular domain with unfitted essential boundary
The third example considers the solution of the Poisson equation in circular domain
subject to unfitted essential boundary conditions [48]:

—Au=1,

14(0.95,0) = 0.1 (24)

where the physical domain is defined 2 = (0,0.95) x (0, 27) and the background mesh
domain is Q,, = (—1.05,1.05) x (—1.05, 1.05). The analytical solution is given by:

(0.95% — r?)

u(r,0) = 2

+0.1 (25)
It can be noted that whilst this is a radial problem, the numerical solution was car-
ried out using Cartesian coordinates. In addition, the circular boundary of the physi-
cal domain is approximated using piecewise linear segments within each element.
An example of one of the meshes used in the analysis that shows the boundary
marked with a black line, can be seen in Fig. 19.
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Fig. 21 Elevation of the numerical solution

The results of the convergence test can be seen in Fig. 20, whilst the elevation of the
solution for the finest mesh can be seen in Fig. 21. From the figures, it is clear that the
method converges optimally and remains well conditioned.

This example indicates that the method performs well for unfitted problems on
curved domains, with essential boundary conditions.

Poisson problem on annulus domain with unfitted essential boundary
The final example considers the solution of the Poisson equation on an annulus, sub-
ject to unfitted essential boundary conditions:

—Au=0,

a2 cos (20)

b? 260
u(b,6) = %() 1

where a = 0.72, b = 0.37, the physical domain is defined 2 = (0.37,0.72) x (0,27) and
the background mesh domain is Q,, = (—1.05,1.05) x (—1.05, 1.05). The analytical solu-
tion is given by:

r2 cos (20
Peosan)

u(r,0) = >

1 (27)

As with the previous example, it is noted that whilst this is a radial problem, the
numerical solution was carried out using Cartesian coordinates. In addition, the cir-
cular boundary of the physical domain is approximated using piecewise linear seg-
ments within each element.

An example of one of the meshes used in the analysis that shows the boundaries
marked with a black line, can be seen in Fig. 22.

The results of the convergence test can be seen in Fig. 23, whilst the elevation of the
solution for the finest mesh can be seen in Fig. 24. From the figures, it is clear that the
method converges optimally and remains well conditioned.

This example again indicates that the method performs well for unfitted problems
on curved domains, with essential boundary conditions.
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Fig. 22 Finite element mesh used in the analysis and unfitted boundaries
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Concluding remarks

A novel unfitted finite element method has been presented that allows for strong
enforcement of boundary and interface conditions, as well as cut element stability. This
is achieved through the use of multi-point constraints that have the additional benefits
of avoiding the need for penalty parameters, and allowing the constrained degrees of
freedom to be eliminated from the system of equations. This allows for the simulation
of problems with both strong and weak discontinuities without introducing additional
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degrees of freedom that could significantly improve computational efficiency. In addi-
tion to this, the method does not require special enrichment functions and can capture
strong and weak discontinuities using only the standard finite element basis functions.
The numerical examples presented have shown that the method converges optimally
under mesh refinement and remains well conditioned. Whilst the present work focuses
on the Poisson problem, the approach could be employed for range of other problems.

Acknowledgements
I would like to thank the Resilient Structures and Construction Materials (RESCOM) group at Cardiff University for their
support throughout and in particular Tony Jefferson for the numerous inspiring, helpful discussions and advice.

Author contributions
The author read and approved the final mansucript.

Funding
Financial support from the UKRI-EPSRC Grant EP/P02081X/1 “Resilient Materials for Life (RM4L)"is gratefully
acknowledged.

Availability of data and materials
Information on the data underpinning the results presented here, including how to access them, can be found in the
Cardiff University data catalogue at (https://doi.org/10.17035/d.2022.0217821122).

Declarations

Competing interests
The author declares that they have no competing interests.

Received: 12 January 2022 Accepted: 20 August 2022
Published online: 21 September 2022

References

1. Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite element method. Comput
Methods Appl Mech Eng. 2000;181:43-69.

2. Strouboulis T, Copps K, Babuska I. The generalized finite element method. Comput Methods Appl Mech Eng.
2001;190:4081-193.

3. Strouboulis T, Copps K, Babuska I. The generalized finite element method: an example of its implementation and
illustration of its performance. Int J Numer Meth Eng. 2000;47:1401-17.

4. Duarte CAM, Babuska I, Oden JT. Generalized finite element methods for three-dimensional structural mechan-
ics problems. Comput Struct. 2000;77:215-32.

5. GuptaV, Kim DJ, Duarte CA. Analysis and improvements of global-local enrichments for the generalized finite
element method. Comput Methods Appl Mech Eng. 2012;245-246:47-62.

6. O'Hara P, Duarte CA, Eason T. A two-scale generalized finite element method for interaction and coalescence of
multiple crack surfaces. Eng Fract Mech. 2016;163:274-302.

7. Zhang Q. DOF-gathering stable generalized finite element methods for crack problems. Numer Methods Partial
Differ Equ. 2020;36:1209-33.

8. Zhang Q, Cui C. Condensed generalized finite element method. Numer Methods Partial Differ Equ.
2021;37:1847-68.

9. Igbal M, Alam K, Ahmad A, Magsood S, Ullah H, Ullah B. An enriched finite element method for efficient solu-
tions of transient heat diffusion problems with multiple heat sources. Eng Comput. 2022;38:3381-97.

10. Ma J, Duan Q, Tian R. A generalized finite element method without extra degrees of freedom for large deforma-
tion analysis of three-dimensional elastic and elastoplastic solids. Comput Methods Appl Mech Eng. 2022;392:
114639.

11. Zhang Q, Cui C, Banerjee U, Babuska I. A condensed generalized finite element method (CGFEM) for interface
problems. Comput Methods Appl Mech Eng. 2022;391: 114527.

12. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng.
1999;45:601-20.

13. Moés N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer
Meth Eng. 1999;46:131-50.

14. Fries TP, Belytschko T. The intrinsic xfem: a method for arbitrary discontinuities without additional unknowns. Int
J Numer Meth Eng. 2006;68:1358-85.

15. Tian R, Wen L. Improved xfem—an extra-dof free, well-conditioning, and interpolating xfem. Comput Methods
Appl Mech Eng. 2015;285:639-58.

16. YuT, Bui TQ. Numerical simulation of 2-d weak and strong discontinuities by a novel approach based on XFEM
with local mesh refinement. Comput Struct. 2018;196:112-33.

17. Bybordiani M, Latifaghili A, Soares D Jr, Godinho L, Dias-da-Costa D. An xfem multi-layered Heaviside enrichment
for fracture propogation with reduced enhanced degrees of freedom. Int J Numer Meth Eng. 2021;122:3425-47.


https://doi.org/10.17035/d.2022.0217821122

Freeman Adv. Model. and Simul. in Eng. Sci. (2022) 9:19

22.

23.

24,

25.

26.

27.
28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

52.

Tian W, Huang J, Jiang Y, Chen R. A parallel scalable domain decomposition preconditioner for elastic crack
simulation using XFEM. Int J Numer Meth Eng. 2022;123:3393-417.

Hansbo A, Hansbo P. An unfitted finite element method, based on Nitche's method, for elliptic interface prob-
lems. Comput Methods Appl Mech Eng. 2002;191:5537-52.

Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid
mechanics. Comput Methods Appl Mech Eng. 2004;193:3523-40.

. Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equa-

tions. Int J Numer Meth Eng. 2015;104:472-501.

Claus S, Kerfriden P. A CutFEM method for two-phase flow problems. Comput Methods Appl Mech Eng.
2019;348:185-206.

Lozinski A. CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary
conditions on unfitted meshes. Comput Methods Appl Mech Eng. 2019;356:75-100.

Kerfriden P, Claus S, Mihai IC. A mixed-dimensional cutfem methodology for the simulation of fibre-reinforced
composites. Adv Model Simul Eng Sci. 2020;7:18.

Mikaeili E, Claus S, Kerfriden P. Concurrent multiscale analysis without meshing: microscale representation with
CUutFEM and micro/macro model blending. Comput Methods Appl Mech Eng. 2022;393: 114807.

Melenk JM, Babuska I. The partition of unity finite element method: basic theory and applications. Comput
Methods Appl Mech Eng. 1996;139:289-314.

Babuska I, Melenk JM. The partition of unity method. Int J Numer Meth Eng. 1997,40:727-58.

Song JH, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom
nodes. Int J Numer Meth Eng. 2006,67:868-93.

Aragéon AM, Simone A. The discontinuity-enriched finite element method. Int J Numer Meth Eng.
2017;112:1589-613.

van den Boom SJ, Zhang J, van Keulen F, Aragon AM. A stable interface-enriched formulation for immersed
domains with strong enforcement of essential boundary conditions. Int J Numer Meth Eng. 2019;120:1163-83.
Soghrati S, Aragdn AM, Duarte CA, Geubelle PH. An interface-enriched generalized fem for problems with
discontinuous gradient fields. Int J Numer Meth Eng. 2012;89:991-1008.

Liu D, van den Boom SJ, Simone A, Aragdén AM. An interface-enriched generalized finite element formulation for
locking-free coupling of non-conforming discretizations and contact. Comput Mech. 2022. https://doi.org/10.
1007/500466-022-02159-w.

Oliver J, Huespe AE, Sanchez PJ. A comparative study on finite elements for capturing strong discontinuities:
E-FEM vs X-FEM. Comput Methods Appl Mech Eng. 2006;195:4732-52.

Dias-da-Costa D, Alfaiate J, Sluys LJ, Areias P, Julio E. An embedded formulation with conforming finite elements
to capture strong discontinuities. Int J Numer Meth Eng. 2013;93:224-44.

Nikoli¢ M, Do XN, Ibrahimbegovic A, Nikoli¢ Z. Crack propagation in dynamics by embedded strong discontinu-
ity approach: enhanced solid versus discrete lattice model. Comput Methods Appl Mech Eng. 2018;340:480-99.
Freeman BL, Bonilla-Villalba P, Mihai IC, Alnaas WF, Jefferson AD. A specialised finite element for simulating self-
healing quasi-brittle materials. Adv Model Simul Eng Sci. 2020;7:32.

Liu F. Modeling hydraulic fracture propagation in permeable media with an embedded strong discontinuity
approach. Int J Numer Anal Meth Geomech. 2020;44:1634-55.

Stanic A, Brank B, Ibrahimbegovic A, Matthies HG. Crack propagation simulation without crack tracking
algorithm: embedded discontinuity formulation with incompatible modes. Comput Methods Appl Mech Eng.
2021;386: 114090.

Saksala T. Effect of inherent microcrack populations on rock tensile fracture behaviour: numerical study based
on embedded discontinuity finite elements. Acta Geotech. 2022;17:2079-99.

Tian R. An extra-dof-free and linearly independent enrichments in GFEM. Comput Methods Appl Mech Eng.
2013;266:1-22.

Hou W, Jiang K, Zhu X, Shen Y, Li Y, Zhang X, Hu P. Extended isogeometric analysis with strong imposing essen-
tial boundary conditions for weak discontinuous problems using B4+ splines. Comput Methods Appl Mech
Eng. 2020;370: 113135.

Babugka I. The finite element method with penalty. Math Comp. 1973;27:221-8.

Hansbo P. Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen.
2005;28:183-206.

Ruberg T, Cirak F, Garcia Aznar JM. An unstructured immersed finite element method for nonlinear solid
mechanics. Adv Model Simul Eng Sci. 2016;3:22.

Babuska I. The finite element method with lagrangian multipliers. Numerische Math. 1973;20:179-92.

Moés N, Béchet E, Tourbier M. Imposing Dirichlet boundary conditions in the extended finite element method.
Int J Numer Meth Eng. 2006;67:1641-69.

Kumar AV, Padmanabhan S, Burla R. Implicit boundary method for finite element analysis using non-conforming
mesh or grid. Int J Numer Meth Eng. 2008;74:1421-47.

Pande S, Papadopoulos P, Babuska I. A cut-cell finite element method for Poisson’s equation on arbitrary planar
domains. Comput Methods Appl Mech Eng. 2021;383: 113875.

Badia S, Verdugo F, Martin AF. The aggregated unfitted finite element method for elliptic problems. Comput
Methods Appl Mech Eng. 2018;336:533-53.

Burman E, Cicuttin M, Delay G, Ern A. An unfitted hybrid high-order method with cell agglomeration for elliptic
interface problems. SIAM J Sci Comput. 2021;43:A859-82.

. Hansbo P, Larson MG, Zahedi S. A cut finite element method for a Stokes interface problem. Appl Numer Math.

2014,85:90-114.
Hollig K, Reif U, Wipper J. Weighted extended b-spline approximation of Dirichlet problems. SIAM J Numer Anal.
2001;39:442-62.

Page 21 of 22


https://doi.org/10.1007/s00466-022-02159-w
https://doi.org/10.1007/s00466-022-02159-w

Freeman Adv. Model. and Simul. in Eng. Sci. (2022) 9:19 Page 22 of 22

53 Main A, Scovazzi G. The shifted boundary method for embedded domain computations. Part 1: Poisson and
Stokes problems. J Comput Phys. 2018;372:972-95.

54, LiK Atallah NM, Main A, Scovazzi G. The shifted interface method: a flexible approach to embedded interface
computations. Int J Numer Meth Eng. 2020;121:492-518.

55. LiK Atallah NM, Rodriguez-Ferran A, Valiveti DM, Scovazzi G. The shifted fracture method. Int J Numer Meth Eng.
2021;122(6641-66791): 114527.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	A multi-point constraint unfitted finite element method
	Abstract 
	Introduction
	Problem formulation
	Unfitted finite element formulation
	Unfitted finite element approximation
	Essential boundary conditions
	Interface conditions
	Cut element stability

	Numerical examples
	Heat conduction with unfitted Neumann boundary condition
	Poisson interface problem with unfitted weak and strong discontinuity
	Poisson problem on circular domain with unfitted essential boundary
	Poisson problem on annulus domain with unfitted essential boundary

	Concluding remarks
	Acknowledgements
	References




