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Abstract 

The behavior of many physical systems is described by means of differential equations. 
These equations are usually derived from balance principles and certain modelling 
assumptions. For realistic situations, the solution of the associated initial boundary 
value problems requires the use of some discretization technique, such as finite differ‑
ences or finite volumes. This research tackles the numerical solution of a 1D differential 
equation to predict water surface profiles in a river, as well as to estimate the so‑called 
roughness parameter. A very important concern when solving this differential equa‑
tion is the ability of the numerical model to capture different flow regimes, given 
that hydraulic jumps are likely to be observed. To approximate the solution, Physics‑
Informed Neural Networks (PINN) are used. Benchmark cases with different bed profile 
shapes, which induce different flows types (supercritical, subcritical, and mixed) are 
tested first. Then a real mountain river morphology, the so‑called Step‑pool, is studied. 
PINN models were implemented in Tensor Flow using two neural networks. Different 
numbers of layers and neurons per hidden layer, as well as different activation func‑
tions (AF), were tried. The best performing model for each AF (according to the loss 
function) was compared with the solution of a standard finite difference discretization 
of the steady‑state 1D model (HEC‑RAS model). PINN models show good predictability 
of water surface profiles for slowly varying flow cases. For a rapid varying flow, the loca‑
tion and length of the hydraulic jump is captured, but it is not identical to the HEC‑RAS 
model. The predictability of the tumbling flow in the Step‑pool was good. In addition, 
the solution of the estimation of the roughness parameter (which is an inverse prob‑
lem) using PINN shows the potential of this methodology to calibrate this parameter 
with limited cross‑sectional data. PINN has shown potential for its application in open 
channel studies with complex bed profiles and different flow types, having in mind, 
however, that emphasis must be given to architecture selection.
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Introduction
Besides its extensive use for classification problems and for the search of patterns in 
data, Machine Learning techniques (ML) have shown a great capability as surrogate 
models to approximate the behavior of both artificial and natural systems. ML can find 
non-linear complex spatio-temporal functional relations for the big-data regimes [1, 2]. 
Nevertheless, ML has certain drawbacks affecting its performance. Firstly, it does not 
consider the system physics. Secondly, it depends on the quantity and quality of data to 
be robust and to attain convergence [1, 3]. In fact, in natural systems, the available data 
may be scarce because of the difficulty of measuring. To address this challenge, machine 
learning techniques can take advantage of the knowledge embedded in the laws of phys-
ics [2]. This notion leads to the approach known as Physics-Informed Machine Learn-
ing. In particular, Physics-Informed Neural Networks (PINN) have been applied to solve 
both forward and inverse problems. Forward problems deal with the solution of Initial 
Boundary Value Problems [3, 4]. An inverse problem tackles the inference of quantities 
of interest such as parameters or hidden states of a system using a limited and poten-
tially noisy set of observed data [3–5].

An interesting feature of PINN is that the evaluation of derivatives is performed 
through automatic differentiation (AD) [6]. AD consists of a family of techniques in 
which the evaluation of derivatives is exact without resorting to symbolic differentia-
tion [7]. In addition, PINN does not require discretization points. In that sense, it can be 
classified as a meshless method. Collocation points, where the differential equations are 
evaluated, need to be provided [3].

Physics-informed machine learning has been used in many studies related to hydro-
dynamics [8, 9]. Mao et al. [4] solved 1-D and 2-D Euler equations for high-speed aer-
odynamic flow with Physics-Informed Neural Network (PINN). The results were not 
superior to traditional techniques for forward problems, but PINN results were supe-
rior in inverse problems. Guo et  al. [10] tested PIDL prediction capacity to solve dif-
ferent partial differential equations (PDE): 1-D wave equation, kdV Burger’s equation, 
and Two-soliton solution of the korteweg-De Vries Equation. In all cases, PIDL provides 
good predictability. However, the authors have not been able to find any application of 
PINN for mountain rivers. The modeling of a mountain river reach is a challenging task 
[11]. A mountain river model must be able to deal simultaneously with Gradually Var-
ied Flows (GVF, either only subcritical or only supercritical) and Rapid Varying Flows 
(RVF, transcritical: both subcritical and subcritical regimes are observed) [12]. GVF 
present a slow variation of the flow depth profile with parallel streamlines. RVF have a 
fast change of water depth with streamlines having a pronounced curvature producing 
discontinuities in the solution (hydraulic jumps). RVF can produce spurious oscillations 
around discontinuities in a numerical model [11, 13]. To explore the ability of PINN to 
deal with these problems, different open channel cases with increasing complexity have 
been tested in this study.

The first two benchmark cases present GVF, where the solution is smooth. Thus, these 
cases were helpful to ensure that the developed PINN method provide correct answers. 
The next two benchmark cases deal with RVF. These cases were used to test the solution 
stability in case of discontinuities, which is crucial for the real cases. For RVF, two tran-
sitions were tested: supercritical to subcritical and subcritical to supercritical. All the 
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previous cases give a clear picture of the PINN predictability performance. Then, it was 
tested in a more complex application: A mountain river reach. The natural system under 
analysis was a morphology called Step-pool, which is frequently found in mountain 
streams when bed slope varies from 0,04–0,2 [14]. Step-pools are an alternation of step-
pool units having a stair-case shape [14]. A step-pool unit has a step commonly formed 
by boulders and cobbles but other materials such as large wood debris or bedrock are 
also found [15], and a pool having finer material [14]. This morphology regulates flow 
resistance through a tumbling flow [15]. A tumbling water flow, over or through steps, 
is supercritical until it falls into a pool and changes to a subcritical flow after a hydraulic 
jump [16]. Below steps is the place with the higher turbulence producing energy dissipa-
tion due to roller eddies, hydraulic jumps and velocity fluctuations [15, 16].

In this study, the steady case is considered, so the Energy Differential Equation (EDG) 
is used. The same equation is solved for this case by a widely used hydrodynamic model 
HEC-RAS [17]. EDG is expected to work well for GVF. However; EDG is not valid in 
RVF [17], so spurious oscillations are expected. Indeed, the well-known software 
HECRAS uses a steady version of the momentum equation under some RVF conditions. 

The remaining of this article is organized as follows. "Materials and methods" section 
provides the materials and methods applied in this article, including a description of the 
five studied cases, the PINN architectures implemented, a description of the HEC-RAS 
model and the metrics to compare PINN and HEC-RAS results. "Results” section com-
pares the results of different PINN architectures, taking the HEC-RAS model as a base-
line. An analysis of the performance of activation functions, neural network dimension, 
and PINN predictability is done in the "Discussion” section.  "Conclusions" section high-
lights the main findings in the current research.

Materials and methods
Cases under study

Benchmark cases

PINN predictability was tested for four benchmark open channel cases with prismatic 
cross sections for the forward problem. Each case has different bed shapes produc-
ing different water surface profiles. The main idea is to test the ability of the method to 
approximate the solution of the differential equation for different flow regimes. Case 1 is 
intended to represent the longitudinal profile of a river with a changing bed slope [18]. 
Figure 1a depicts the bed profile having different inflection points. The cross-section is 
rectangular with a width (B) of 10  m, a Manning’s roughness value (n) of 0.03, and a 
flow (Q) of 15  m3  s−1. In this case there is GVF in the whole channel; moreover, the flow 
regime is known to be subcritical.

Case 2 represents a case of rapid flow in a spillway where the slope increases down-
stream (Refer Fig. 1b)[18]. The flow regime in this case is also GVF, but now it is super-
critical. The cross-section and Manning’s roughness values are the same as in Case 1, but 
the flow is 22  m3  s−1.

Figure  1c shows the profile for Case 3, which consists of two parts separated  by an 
inflection point. The first part is 200 m long with a slope of 0.025. The second part is 
600 m long, having a slope of 0.0002. The sudden change in bed slope results in the pres-
ence of a hydraulic jump (a transition from supercritical to subcritical flow), i.e., a RVF. 
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The cross-section in this reach is trapezoidal with a base of 2.5 m, a lateral slope of 0.8, n 
is 0.012, and the flow is 25  m3  s−1.

Figure 1d depicts Case 4. It is composed of two reaches. The first reach is 1000 m long 
with a slope of 0.0006, and the second one is 200 m long with a slope of 0.015. The sud-
den slope increase produces the flow depth profile to suddenly decrease, passing from 
subcritical to supercritical flow, a RVF as in the previous case. As in Case 3, Case 4 has a 
trapezoidal cross-section with a width of 1 m, a lateral slope of 1, an n value of 0.018 and 
a discharge of 6  m3  s−1.

Real case

Figure  1e depicts the profile of the step-pool under study having two step-pool units. 
The chosen morphology to be studied is Step-pool 1 in Fig. 2. This is part of a hydraulic 

(a) (b)

(c) (d)

(e)
Fig. 1 Bed profile for different cases. 
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observatory where different morphologies are studied in the headwaters of the moun-
tain Quinuas river, in Southern Ecuador. This reach is 12.22 m long and has a mean slope 
of 6.1%. Moreover, this Step-pool has been used in previous studies by the authors [19, 
20]. The available data consist of mean velocity and water depth for different flow magni-
tudes so that different flow resistance conditions can be studied. Moreover, topography 
and bed composition are available as well. This kind of morphology has been selected for 
its flow characteristics, as mentioned in the Introduction, given that its prediction poses 
a challenge to any numerical model.

Three flow magnitudes have been chosen for the current research based on the data 
available in Cedillo et al. [19]: 0.035  m3s−1, 0.443  m3s−1, and 0.878  m3s−1 with the respec-
tive effective roughness coefficients: 0.414, 0.193, and 0.134.

Physical informed neural network (PINN)

The scheme shown in Fig.  3 schematizes the PINN architecture used for our study. It 
is trained using a loss function that includes both data and the evaluation of the gov-
erning differential equation at collocation points. This combination has demonstrated 
to be exceptionally well suited for the solution of physical equations governing a given 
phenomenon, as well as for the corresponding inverse problem. The Energy Differential 
Equation (EDE) (Eq. (1)) was used as the main information for PINN since all the cases 
are run under steady-state conditions [18].

It is important to mention that the governing equation was written using centimeters 
as length units for the water depth and the bed level. This was necessary because during 
exploratory tests the resulting water levels of PINN did not approximate correctly the 
analytical solutions (AS). Take into account that the way the PINN method enforces the 
different physical principles and constraints is by means of a loss function that has to 

Fig. 2 Plan view of the studied 1500 km river reach showing the sequence of the sub‑reaches and the 
location of the meteorological station
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be optimized. Thus, it is necessary for convergence that the terms of this loss function 
are of the same order of magnitude. In the above-mentioned exploratory studies, it was 
observed that gradients in the differential equation had a lower order of magnitude than 
other terms of the loss function. After the above-mentioned modification of units, PINN 
started converging to good solutions.

The Energy Differential Equation (EDE) has the following form:

where  zo is the bed level (cm),  xo is the distance (m), h is the water depth (cm), Q is the 
flow  m3s−1, R hydraulic radius (m), and A is the cross-sectional area  (m2). The first term 
in Eq.  (1) represents the change in bed slope elevation  (zo) with the distance  (xo). The 
next term is the water depth slope, followed by the change in kinetic energy. The last 
term deals with the friction loss.

The PINN models were implemented in TensorFlow ® [21]. The code is based on the 
one shared by Raissi et  al. [3]. Following the procedure of Kissas et. al [22], two neu-
ral networks sharing hyper parameters were used. The first one deals with the complex 
geometry present in each case, the second one is for the prediction of water depth. Each 
described case was run with different PINN models varying the number of hidden lay-
ers (3, 5, 7, 9 and 11), the number of neurons per hidden layer (10, 20, 40 and 60), and 
the activation functions: Hyperbolic Tangent (Tanh), ReLU, Sigmoid, and Sin. Tanh is a 
zero-centered AF whose output varies between − 1 and 1 [23]. According to Nwankpa 
et  al. [24], this aids in backpropagation. Tanh suffers saturation when the input tends 
to ± ∞, resulting in a vanishing gradient where the weights are not updated during 
backpropagation [23]. ReLU output is always positive [25], producing bias in the next 
layer [23]. Moreover, it is left-hand saturated, and only a certain number of neurons are 
active [24]. Sigmoid values range between 0 to 1 [25], which has the same bias problem 
as ReLU. The Sin AF has been selected based on [26], who advise not to limit the consid-
ered AF`s to popular ones.

(1)dzo

dxo
+

dh

dx
+

d
(

Q2

2gA2

)

dx
∗ 100+

Q2n2

R
4
3A2

∗ 100 = 0 = f

Fig. 3 Physics‑Informed Deep Learning sheme
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Forward problem: solving the differential equation

In the forward problem, the main information for the loss function comes from the 
evaluation of the governing equation at collocation points. Water depth data is pro-
vided only at the boundary conditions (BC). The loss function is computed using the 
mean square error (MSE) metric, including the data at BC:

where

h
(

xiBC
)

 denotes the training data (water depths) at the boundaries,  hi are the predic-
tions of PINN value at BC, and  NBC the number of training data;

xf
i are the collocation points where the Differential Equation is evaluated and  Nf is 

the number of collocation points;

xG
i are points where the bed elevations are available,  zi are the predictions of geo-

metric points of PINN, and  NG is the number of geometric points available.
Step-pool brings an additional difficulty besides a complex profile: the cross-

sections are not prismatic. Our proposed solution is to obtain an equivalent cross-
section and then adjust cross sectional area (A) and hydraulic radius (R) data to an 
exponential equation which are used for discharge-stage relations. The computation 
of the equivalent cross-sections requires the following steps. First, cross-sections are 
measured at the studied reach; second, the cross-sections coordinates are translated 
so that the deepest point is located at the origin; third, each elevation of the equiva-
lent cross-section is the geometric mean of the corresponding points of the measured 
cross-sections. Geometric mean is not sensible towards outliers [27, 28] being useful 
in highly varied cross sections in natural rivers.

Inverse problem

The inverse problem was only solved for Case 5: The Step-pool. In this case, instead 
of having water depths at BC, there are water level measured at three points inside 
the domain. Those values are used instead BC values in Eq. (3) so that this loss func-
tion component enforces measured field data. In the inverse problem, the water level 
profile as well as the roughness factor are found. The roughness values are compared 
with the effective roughness coefficients found in Cedillo et al. [19] with GLUE meth-
odology. The scope of inverse problem is to analyze the predictive capacity of the 

(2)Loss function = MSEBC + MSEf + MSEG

(3)MSEBC = 1/NBC
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∑
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∣
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roughness parameter under different resistance conditions and with limited cross-
sectional data.

HEC RAS model

HEC-RAS® is a hydrodynamic model widely used in different studies [29–32]. Further-
more, these model results have been used as the benchmark for PINN results. All the 
models have been run under steady-state conditions. Case 1 was run under subcritical 
flow, Case 2 was run with supercritical flow, and Case 3, Case 4, and Case 5 were run 
with a mixed flow regime. Under these conditions, HEC-RAS solves the energy equation 
between two consecutive cross-sections (Eq. (6)) [17]:

z1,  z2 are bed levels;  h1,  h2 are water depth;  U1,  U2 are velocities; α1, α2 are velocity 
weighting coefficients; and  he is the energy head loss. The parameter  he has, in princi-
ple, two components: expansion or contraction losses and friction losses. All the studied 
cases have prismatic XS, so there are no expansion–contraction losses.

Direct step method

In Case 3 an additional solution method called “Direct Step Method” is used [33]. This 
method consists of the solution of The Energy Differential Equation (EDE) (Eq. (1)) by 
using finite differences. This methodology is applied in this case because of the discon-
tinuity (hydraulic jump) location procedure used. The hydraulic jump location is deter-
mined through an iterative process where the initial depth upstream  (yi) and subsequent 
depth downstream  (ys) must coincide with the values of equation given by Marriot et al. 
[33] which relate both values. This entails using and ad hoc strategy once hydraulic 
jumps are detected. For PINN, we do not use any ad hoc procedure.

Metrics

Three metrics are used to compare the PINN predictions and the HEC-RAS model 
results. Each metric analyzes different aspects of the difference between both models 
(residuals). First, Root Mean Square Error (RMSE) is an average of the residuals between 
PINN and HEC-RAS model, giving more weight to higher residuals [34, 35]. Second, 
MAE is an average of the residuals, where all the residuals have the same weight [34]. 
Third, the Nash–Sutcliffe efficiency index (EF) is a reliable and flexible metric used as an 
indicator of fitness goodness [36–38]. Moreover, Ritter & Muñoz-Carpena [39] provides 
a table to interpret the fitting quality based on the EF value. Both RMSE and MAE were 
divided by the mean of the observations and multiplied by 100 to have dimensionless 
metrics.

Systematic studies

In order to gain a deeper understanding of PINN as a numerical method for the solution 
of the differential equation treated in this study, we have performed several numerical 

(6)z2 + h2 + α2U
2
2/2g = z1 + h1 + α1U

2
1/2g + he
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studies in a systematic way to analyze both the rate of convergence and the robustness of 
the approach. For the latter, we have performed a sensitivity analysis.

Rate of convergence

The convergence rate in a numerical method can be determined by finding the rela-
tion between the log of the error norm of the solution  (L2-norm [40]) and the dis-
cretization size (related to the number of grid points). The slope of that relation is 
called rate of convergence. The rate of convergence indicates the rate at which the 
error decreases as the number of grid points increases [41].

As stated before, PINN does not have grid points, sensu stricto. Instead, it has the 
so-called collocation points, where the governing equations are imposed through the 
loss functions. Hence, we have computed different approximations of the solution 
with different number of collocation points. The  L2-norm of the solution error was 
found for each run, allowing for the determination of rates of convergence for the dif-
ferent studied cases. This study was performed for each case with the activation func-
tion rendering the lowest loss function at convergence.

Sensitivity test

A sensitivity test has been performed by introducing a “perturbation” at the boundary 
conditions. That “perturbation” consist on a certain modification of the water depth 
values at the boundary condition: ± 2%, ± 4%, ± 6%, ± 8%, and ± 10%. The idea is to 
see the effect of this perturbation on the solution.

Fig. 4 Cross sections in Step‑pool and equivalent cross section
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Results
Equivalent cross‑section

Figure  4 shows three different measured cross-sections of the Step-pool. In addi-
tion, that Figure also shows that the equivalent cross-section tends to follow a cen-
tral tendency, where the outliers do not play an important role. Furthermore, Fig. 5a, 
b shows both the Area and Hydraulic Radius of the equivalent cross-section fit well 
to an exponential equation having  R2 values higher than 0.9.

(a)

(b)
Fig. 5 Area and Hydraulic Radius data of the equivalent cross‑section. a Area, b Hydraulic Radius
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Forward PINN: solving the differential equation

We analyze now the performance of PINN as a discretization method for a Differential 
Equation that models the behavior of a stationary 1D fluid in an open channel. The idea 
is to study several aspects of the approximation space subjacent to the PINN method, 
which is directly related to the architecture of the Neural Networks used. We start by 
analyzing the performance of several activation functions.

Activation function performance

Several PINN models were run with different combinations of number of layers (depth), 
neurons per layer (width), and activation functions (AF). We consider the best model for 
each AF as the one that has reached the lowest value for loss function during the train-
ing process.

The ReLU activation function is the one with the lowest predictive performance in all 
the cases under study, having the highest values of the RMSE and MAE statistics in cases 
where hydraulic discontinuities are present—RVF flow (refer to Table 1). Moreover, EF 

Table 1 Best cases of activation functions based on loss function

Case Activation function RMSE % MAE % EF Hidden 
layers

Neurons 
per hidden 
layer

Loss function

Case 1 Tanh 0.53 0.42 0.999 7 60 4.57E–04

ReLU 16.04 14.5 − 0.138 7 60 1.15E–01

Sin 0.99 0.77 0.996 5 40 3.77E–03

Sigmoid 0.58 0.46 0.999 7 60 1.17E–03

Case 2 Tanh 2.23 2.07 0.988 5 20 2.25E–03

ReLU 6.25 4.32 0.903 7 40 5.72E + 00

Sin 2.2 2.04 0.988 5 40 8.07E–03

Sigmoid 2.24 2.08 0.988 7 60 1.86E–03

Case 3 Tanh 26.69 12.08 0.554 5 60 7.42E–04

ReLU 42.95 39.65 − 0.154 3 60 2.85E + 00

Sin 26.11 11.29 0.573 3 20 9.85E–02

Sigmoid 25.4 12.91 0.596 3 40 5.78E–03

Direct Step Method 18.05 4.85 0.796 – – –

Case 4 Tanh 1.76 0.93 0.997 3 20 2.61E–06

ReLU 21.13 14.23 0.589 3 40 1.68E–01

Sin 4.04 1.77 0.985 7 40 2.39E–06

Sigmoid 4.56 2.67 0.981 7 60 1.56E–05

Case 5 Low Flow Tanh 7.86 6.62 0.932 3 40 8.48E–02

ReLU 27.49 18.48 0.171 7 60 4.48E + 01

Sin 6.56 5.88 0.953 7 60 9.87E–02

Sigmoid 7.44 6.45 0.939 7 40 1.07E–01

Case 5 Mid Flow Tanh 6.89 5.06 0.925 3 40 8.48E–02

ReLU 21.22 14.69 0.291 7 60 4.48E + 01

Sin 5.18 3.89 0.958 7 60 9.87E–02

Sigmoid 6.32 4.89 0.937 7 40 1.07E–01

Case 5 High Flow Tanh 6.30 4.82 0.933 3 40 8.48E–02

ReLU 19.90 13.55 0.328 7 60 4.48E + 01

Sin 4.90 3.67 0.959 7 60 9.87E–02

Sigmoid 5.76 4.56 0.944 7 40 1.07E–01
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(a) (b)

(c) (d)

Fig. 6 PINN results with the best case for each activation function for: a Case 1, b Case 2, c Case3, and d Case 
4

(a) (b)

(c)
Fig. 7 PINN results with the best case for each activation function for Step‑pool: a Low flow, b Mid flow, and 
c High Flow
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depicts that most of the ReLU models have a “Unsatifactory” predictability except for 
Case 2 where the goodness-of-fit is “Very good” [39]. Case 2 has the smoothest solution 
(GVF) with a constant descending pattern downstream (Fig. 6b). The remaining cases 
have peaks and minima in the solution. Furthermore; Figs. 6, 7 display ReLU predicting a 
completely different response pattern than Sigmoid, Sin, Tanh, or HEC-RAS for bench-
mark as well as for the real case.

Looking at Table  1, the prediction quality of Sigmoid, Sin, and Tanh is almost the 
same for all the cases according to RMSE and MAE. Moreover, EF shows a “Very Good” 
goodness-of-fit for most studied Cases. However, in Case 3, these AFs provide “Unsat-
isfactory” predictions. The “Direct Step Method” provides the best fitting according to 
Table 1, with lower RMSE and MAE values than PINN results and an EF value of 0.796 
rendering a fitting performance deemed as “Acceptable”. Figure 6c and d shows the pres-
ence of oscillations near discontinuities in benchmark cases with RVF when Sigmoid 
and Sin are used. Sigmoid, Sin, and Tanh have produced promising results predicting 
almost the same water depth profile in the real case (Fig. 7a–c).

There are some predictability aspects to consider while using PINN. In Case 3 (Fig. 6c), 
three of the activation functions, Tanh, Sin, and Sigmoid, were able to predict the pres-
ence of the discontinuity (hydraulic jump) downstream from the place where the HEC-
RAS model predicted it. None of them was able to accurately locate the position of the 
discontinuity on the second part of the reach. The “Direct Step Method” was not able 
to predict the position of the hydraulic jump either, but it was the closest to the HEC-
RAS result. In the real case (Case 5, Fig. 7), the performance of PINN improves as flow 
increases according to RMSE and MAE values. Furthermore, the predictability of PINN 
in this real case is very good according to EF values [39] except for ReLU AF. However, 
Fig. 7 presents discrepancies between the results of PINN and HEC-RAS which is not 
the case in benchmark cases.

Based on the above analysis, Tanh has been the activation function with the highest 
resilience for all the studied cases when an important number of collocation points are 
used. Thus, the analysis of the neural network’s size will be based on the models using 
Tanh. On the other hand, ReLU has been the activation function with the worst perfor-
mance providing acceptable water depth predictions only in Case 2.

Neural network architecture

According to the previous section, the neural network architecture analysis is based on 
the best performing models, i.e., those using Tanh as AF. The optimal combination of 
hidden layers and neurons per hidden layer varies with the case under study. Accord-
ing to Table 1, a similar number of hidden layers are used in Cases 1, 2, and 3 having a 
variation of 5 and 7. However, the number of neurons per hidden layer ranges from 20 
to 60. Case 4 has the lowest number of layers and neurons: 3 hidden layers with 20 neu-
rons per hidden layer. Case 5 has 40 neurons per hidden layers being inside the range of 
Cases 1, 2, and 3, but the number of hidden layers is 3 which is lower than the previous 
mentioned cases. Moreover, it is important to notice that the remaining AFs in Case 5 
are inside the number of hidden layers and neurons per hidden layer given by Cases 1, 2, 
and 3.
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Inverse PINN

Figure 8 and Table 2 provides a comparison of the roughness values found by PINN 
with different AFs and the ones obtained through GLUE experiments (effective 
roughness) in Cedillo et al. [19]. Figure 8 displays that PINN roughness values follow 
the descending effective roughness pattern as flow increases. For low flow, Table  2 
shows that Tanh, Sin, and Sigmoid provide similar roughness values, but lower than 
GLUE results. Furthermore, ReLU gives a completely different roughness value, 
lower than the rest of models. For mid and high flow, all the AFs seem to provide the 
same roughness values close to the GLUE ones. Moreover, Table 2 depicts that ReLU 

Fig. 8 PINN results with the best case for each activation function for Step‑pool, high flow

Table 2 Inverse PINN comparison between calibrated roughness values from GLUE experiments 
and the ones obtained from different AFs and different flow values

Flow  (m3  s−1) n GLUE [19] Activation function n Hidden 
layers

Neurons per 
hidden layer

Loss function

0.035 0.555–0.609 Tanh 0.444 3 60 0.024

ReLU 0.245 9 60 21.275

Sin 0.445 5 60 0.020

Sigmoid 0.459 5 60 0.019

0.443 0.105–0.124 Tanh 0.107 7 60 0.025

ReLU 0.135 7 60 27.487

Sin 0.130 5 40 0.067

Sigmoid 0.148 7 60 0.019

0.878 0.092–0.121 Tanh 0.135 3 60 0.024

ReLU 0.122 9 60 28.317

Sin 0.129 5 40 0.044

Sigmoid 0.127 9 60 0.018
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results are not trustful because of the high loss function value being one thousand 
times higher than the rest of AFs.

Looking at Table 2, it is apparent that the hidden layers (ranging from 3 to 9) with 
the lowest loss function covers a wide range of the tested cases; however the number 
of neurons per hidden layer is rather limited to high values such as 40 and 60. Tanh, 
Sin and Sigmoid provides almost the same values for low and high flow, but at mid 
flow Tanh got a value which is inside the roughness value of GLUE experiment.

(a) (b)

(c) (d)

(e)

Fig. 9 Rate of convergence. a Case 1, b Case 2, c Case 3, d Case 4, and e Case 5
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Results of the systematic studies

Rate of convergence

Figure 9a–c provides the plot of  L2-norm against the number of collocation points used 
in PINN. The slope of each plot provides the rate of convergence. Cases with smooth 
solution have different rate of convergence depending on the flow regime. Case 2 (super-
critical flow: shallow and rapid flow; see Fig. 9b), has the highest rate of convergence: 1.4. 
On the other hand, Case 1(subcritical flow: deep and slow flow; see Fig. 9a) shows a rate 
of convergence of 0.4. Cases with discontinuities present different rates of convergence 
depending on the type of discontinuity. Case 3 (Fig. 9c) and Case 5 (Fig. 9e) discontinuity 
consist of a sudden water depth increase (hydraulic jump) having a rate of convergence 

(a) (b)

(c) (d)

(e)

Fig. 10 Sensibility test. a Case 1, b Case 2, c Case 3, d Case 4, and e Case 5
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of 0.2. In contrast, in Case 4 (Fig. 9d) the discontinuity has a sudden decrease of water 
depth. This Case has a higher rate of convergence: 0.7.

Sensitivity test

Figure 10a–e presents the  L2-norm when a “perturbation” of ± 10% is introduced in the 
water depth at the boundary condition. The results depict that the addition of the per-
turbation has effects on the model fitting performance, but, more importantly, a differ-
ent behavior is observed depending on the flow regime. In Case 4 (sudden water depth 
decrease), and Case 5 (Step-pool), there are performance oscillations when the bound-
ary water depths are increased or decreased. In Case 1 (Subcritical flow), the perfor-
mance stays constant until reaching 6% of water depth increase. When the boundary 
water depth increases more than 6%, the performance decreases rapidly. However, there 
are performance oscillations when the boundary water depth decreases. In Case 2 the 
decrease of fitting performance when BC is decreased follows a pattern that seems para-
bolic, but this pattern is close to a line when the perturbation is positive. Case 3 (sudden 
increase of water depth) shows no sensitivity for negative variations in the water depth 
at the boundary; however a positive variation yields the highest performance variations.

Discussion
Activation function performance

The selection of activation functions (AF) is important for the predictability of a neu-
ral network [24, 42], so its analysis is an important issue [25]. An AF introduces non-
linearity into the network [24]. Hence, neural networks can learn complex relationships 
between input and output [43]. Moreover, selecting a convenient AF depends on the 
case under analysis, and there is no standard procedure [25].

The current study found that the quality of the results strongly depends on the AF 
chosen. ReLU was the transfer function with the worst modelling predictions for for-
ward as well as inverse problems. Nevertheless, this AF is the most widely used accord-
ing to Ding et. al [23] for typical machine learning applications. Sigmoid and Sin provide 
good results for GVF, but their performance is not good for RVF. For the inverse prob-
lem, both AF provide good results, except for mid flow where Tanh gives a roughness 
value closer to those of GLUE. Sigmoid cannot be recommended for RVF.

The performance of Sin is not surprise according to Goodfellow et al. [26], who state 
that unpublished AF can have a similar performance to popular AF. Moreover, Hyper-
bolic Tangent (Tanh) is the transfer function with the best predictability for both for-
ward and inverse problem. This AF has been widely adopted in PINN because it is 
infinitely differentiable, which is necessary to approximate the states of second or third-
order partial differential equations governing different cases [2].

Neural network architecture

As in the case of the Activation Function, the number of layers and neurons per hid-
den layer plays an important role in a neural network performance [10, 25]. As stated in 
“Forward pinn: solving the differential equation” and “Inverse pinn” sections, the analy-
sis of the number of layers and neurons is based on Tanh results for forward problem 
and inverse problem.
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Tartakovsky et al. [2] explained that the number of layers and neurons depends on the 
smoothness of the output function. Moreover, the size of a neural network should be 
big enough to learn the mapping between inputs and outputs and small enough to be 
trained with the limited data available.

Forward problem: solving the differential equation

Case 1 and Case 3 (see Figs. 6a and c) have the most complicated water depth profile of 
the benchmark cases. Case 1 water profile is characterized by two peaks with two inflec-
tion points, and Case 3 presents a discontinuity due to a hydraulic jump. Both Cases 
have the neural networks with the biggest size. Furthermore, Case 2 has the smoothest 
water depth profile of all the cases (see Fig. 6b), having the second smallest neural net-
work. The neural network dimensions of Cases 1, 2, and 3 agree with the information 
given above. Case 4 water depth profile (refer to Fig.  6d) has a smooth solution, so it 
is not surprise the size of its neural network being the smallest. Step-pool (Case 5), as 
expected, has a flow depth profile more complex than the benchmark cases due to the 
tumbling flow. The dimension of the neural network, when Tanh is used, is smaller than 
the previous most complex benchmark cases: Case 1 and Case 3.

The literature on PINN has shown that the number of hidden layers ranges from 7 to 
9, while the number of neurons per hidden layer lies in the range of 20 to 120 neurons 
per hidden layer. The studied cases include the solution of forwarding problems using 
Burger’s Eq.  (3), the solution of the Euler equation for high-speed flows [4], the use of 
KdV-Burger’s equation [10], and the fluid of blood in arteries applying a reduced form of 
Navier–Stokes equation [22]. Thus, the literature cases are representative of several phe-
nomena in fluid flows. As mentioned in “Neural network architecture” section, the same 
pattern was obtained in this study, agreeing with the previously mentioned results except 
for Case 5. For Step-pool cases the resulting number of hidden layers is lower than the 
presented range, but the number of neurons per hidden layers is inside the range when 
Tanh is used. Nonetheless, if Sin or Sigmoid are used then the neural network dimension 
agrees with the found range of number of hidden layers and neurons per hidden layer.

Inverse problem

The available found literature for inverse problems is based on data from reference mod-
els or solvers: Raissi et  al. [3] successfully found parameters of Burger’s equation and 
Navier Stokes equations in continuous time models and, Mao et al. [4] was able to find 
states of interest and parameters in high-speed aerodynamic flows. In this study, real 
staff gauges measurements for three flow magnitudes (low, mid, and high flow [19]) were 
used to obtain the roughness parameter.

The range of neural network architecture found in literature for inverse problem 
is highly variable: 3 to 9 hidden layers with 20 to 120 neurons per hidden layer [4, 5]. 
The architecture found in this research is inside the mentioned range. Furthermore, the 
number of hidden layers of the neural network varies depending on the flow magnitude 
while the number of neurons per hidden layer keeps constant. It has not been possible 
to find any reference with the application of PINN in Step-pool for inverse problem to 
compare the results. In that sense, this a first step in that direction.



Page 19 of 23Cedillo et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:10  

PINN predictability

Case 1 and Case 2 show a GVF, meaning that the water depth never crosses the critical 
depth. Under these conditions the use of energy equation is allowed [17]. Case 1 and 
Case 2 has different flow types: Case 1 has subcritical flow, so there is low velocity and 
the flow is considered as tranquil. Case 2 has supercritical flow having high velocity and 
considered as rapid flow [44]. Under subcritical flow, all AF have a good performance to 
predict water depth profile except for ReLU. On the other hand, the prediction of super-
critical flow was performed efficiently by all the AF.

Case 3 and Case 4 represent RVF where the energy equation cannot be applied. 
According to Brunner [17] in the case of rapidly varied flow, HEC-RAS uses the momen-
tum equation for some instances such as hydraulic jump, low flow hydraulics at bridges, 
and stream junctions. In Case 4, PINN got a good answer when Tanh was used as an 
activation function, and the remaining activation functions got spurious discontinui-
ties or non-physical answers. Indeed, PINN and HEC-RAS get the same answer because 
both solve the same equation. On the other hand, PINN was not able to predict the 
water depth profile in Case 3, producing a model with unsatisfactory performance. Even 
though HEC-RAS solves the momentum equation and PINN solves energy equation, 
PINN was able to predict the discontinuity in the water depth profile.

Case 5 represents a real system called Step-pool. For this system, besides having a 
complex profile, the cross sections are variable. Moreover, there is RVF at pools below 
the steps. Even through EF in Table  1 depicts a good fitting performance; Fig.  7a–c 
clearly shows small discrepancies in the water depth between PINN and HEC-RAS at 
some points, attributable to the different description of the cross-sectional geometry 
since in the proposed PINN all the cross sections geometry is contained in an equivalent 
cross section. In case of highly variable cross sections, it will be necessary to divide the 
reach into sub reaches each with a equivalent cross section and to implement continuity 
equations such as the ones used in Kissas et al. [22].

Case 3 and 5 contain hydraulic jumps in the water depth profiles. Case 3 has a sud-
den decrease of the slope, and Case 5 has tumbling flow. Despite being a more complex 
case, Case 5 PINN prediction are much better than Case 3. There are some reasons why 
this may happen. These are, first, the difference between  yi and  ys in Case 3 is 1.56 m 
while in Case 5 the difference ranges from 0.24 to 0.39 cm. The hydraulic jump in Case 
3 is four times bigger than those in Case 5. Second, the roughness value in Case 3 is ten 
times smaller than in Case 5. Thus, the resistance to flow in Case 5 is bigger than in Case 
3 meaning a higher energy dissipation besides the one in the hydraulic jump. It seems 
possible that as hydraulic jump gets higher due to a low flow resistance, the prediction of 
PINN get worse.

Systematic studies

Rate of convergence

Case 2 (Supercritical flow) has the highest rate of convergence. A possible reason of the 
different pattern may be produced by the smoothness of the solution. Indeed, as can be 
seen in Fig. 6b, the water depth in this Case do not have peaks, follow a descending pat-
tern, and have small slopes. This may be the cause of the different convergence answers 
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of PINN. Even though Case 4 has a sudden decrease of water depth (discontinuity), 
this case has a smooth solution. Thus, its high convergence rate is no surprise. Further-
more, the difference between both cases with discontinuities Case 4 and Case 3 (sudden 
increase of water depth) is the way in which HEC-RAS deals with the discontinuity. For 
a discontinuity like Case 3 HEC-RAS uses an alternative form of the momentum equa-
tion. However, for a Case 4 type of discontinuity HEC-RAS uses the same equation as 
ours: the equation of the energy (Eq. (1)).

The cases with a sudden increase in water depth (hydraulic jump) like Case 3 and Case 
5 has the same rate of convergence 0.2. On the other hand, Case 1 (Subcritical flow) 
having a smooth solution with multiple peaks has a rate of convergence of 0.4. Thus, the 
effect of a discontinuity like a sudden increase of water depth affects the convergence by 
50%.

Sensitivity test

Case 3 has the highest changes in the PINN model performance when boundary condi-
tions are increased. The increasing of boundary depth could change the flow conditions 
in this case. Indeed, the boundary condition with supercritical flow could change to sub-
critical flow. In that case, there is no discontinuity (hydraulic jump), which explains the 
significant change in the performance of the method. On the other hand, the reduction 
of the value in the boundary condition might preserve the flow type, so the lack of sensi-
tivity showed in Fig. 10c is justified.

Case 2 has the slowest change in the model fitting performance. Case 2 profile has 
an increasing slope, so the flow is going to be supercritical. The supercritical profile is 
smooth so any change in the BC is not going to affect the water depth in an important 
way.

Case 1 fitting performance is affected only when the BC change reaches the highest 
values. When BC water depth is increased the subcritical flow is preserved. However, 
it seems that when the increase in the BC reaches a certain value the prediction quality 
decreases. The reduction in the boundary could lead to a change in the flow conditions, 
so the oscillation present in − 4% in Fig. 10a could be justified.

The oscillations in performance when BC water depths are increased or decreased 
are to be expected in the real case. This case has the most complex geometry and water 
depth pattern. Thus, any change at the BC could have different effect in the predicted 
water depth.

Conclusions
In this research, the predictive performance of the Physical Informed Neural Network 
(PINN) has been tested for a forward and an inverse problem. Moreover, PINN is a tool 
where the physics of a system is used. Four open channels cases with different bed shapes 
and prismatic cross-sections have been proposed to test the approximation ability of 
PINN under different flow types: subcritical, supercritical, and mixed for forward prob-
lem. Moreover, a fifth case based on a Step-pool in the Quinuas river was also included 
to solve a forward and an inverse problem with PINN. In addition, PINN results for the 
forward problem were compared to HEC-RAS, while the inverse problem results were 
compared with the results of a previous study based on the GLUE methodology.
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This study has provided several interesting results for forward and inverse prob-
lems. For forward problems, PINN has shown good approximation characteristics, 
when a high number of collocation points are used. The predictability of Step-pool 
water depth profile was considered good; however a close look to the profiles shows 
a slight difference between PINN and HEC-RAS probably as a result of the simplified 
cross-sectional information.

The activation function (AF) played an important role in the approximation per-
formance on forward problems. The hyperbolic tangent (Tanh) ended up being the 
activation function with the best performance for forward and inverse problem, when 
there are a sufficiently large number of collocation points. Furthermore, Sin and Sig-
moid did not provide adequate results for rapid flow cases in the forward problem, 
but these AFs provide good results in the inverse problem. ReLU had the worst results 
in all the studied cases.

The rate of convergence was higher in cases with smooth solutions, and poorer in 
cases with a sudden increase of water depth. The introduction of a perturbation at the 
boundary condition has different effects depending on the flow type at each Case.
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