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Abstract 

In recent times, artificial neural networks (ANNs) have become the popular choice 
of model for researchers while performing regression analysis between inputs and 
output. However; in scientific and engineering applications, developed ANN regression 
model is often found to be inconsistent with the physical laws. This is due to the fact 
that ANNs are purely based on data and do not have any understanding of underlying 
physical laws. Alternate ANN frameworks like PGNN (Physics guided neural network) 
has been proposed in literature which incorporate physics loss function in the overall 
loss function to partially alleviate this issue. However, these frameworks don’t evaluate 
the physics consistency of relationship between inputs and output mapped by the 
ANN model which is the source of all physics inconsistencies. Hence, the present paper 
presents a methodology to assess and improve the physics consistency of the input 
output relationship mapped by the ANN regression model. The developed method-
ology can therefore be used to develop physics consistent ANN regression model. 
The heart of the methodology is an inferencing algorithm which interprets the input 
output relationship mapped by the ANN regression model. The inferencing algorithm 
is based on Taylor series and decomposes the ANN regression model into several 
region-wise polynomial models. Moreover, the inferencing algorithm can also find 
regions of singular zones in the ANN model predictions. The region-wise polynomial 
from inferencing algorithm can be used to assess the physics consistency of the ANN 
model. In the region of physics inconsistency, additional data points can be added and 
the ANN model can be re-trained. In cases, where the addition of data points is not 
possible, a physics based loss function can be used. The developed methodology is 
illustrated using several datasets. The developed methodology will help engineers and 
researchers built physics consistent ANN regression models.

Keywords: Neural network regression model, Taylor series, Radius of convergence, 
Degree of Taylor polynomial, Physics consistency, Physics loss function
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Introduction
Artificial neural networks (ANNs) have been increasingly used in various fields such as 
engineering, geology, medicine, business, and experimental physics. Especially in sci-
ence and engineering application, ANN regression models have been increasingly used 
to model complex relationship between various physics quantities. One of most com-
mon usage of ANN regression models in engineering applications are as surrogate mod-
els of physical processes. ANN surrogate models are generally developed either using 
experimental data or high fidelity computation-aided engineering (CAE) model data. 
Few of the applications of ANN regression models in engineering and science applica-
tions are detailed here. Wu et al. [1] developed an ANN surrogate model of engine air 
flow rate as a function of engine speed, manifold absolute pressure, intake and exhaust 
camshaft phasing and this model helped in accelerating the engine design process. 
Engine torque was maximized at elected engine speeds at a wide throttle opening by 
using ANN surrogate model of volumetric efficiency [2]. Meyer and Greff [3] established 
through investigations that ANNs have capability to replace conventional look-up tables 
of engine electronic control unit (ECU). Wendeker and Czarnigowski [4] proposed the 
use of an adaptive control system and a trained ANN surrogate model to minimize the 
error in the estimation of the required air–fuel ratio by an engine for stationary and 
dynamic operating conditions. An On-Board Diagnostic fault detection system using 
an ANN was developed by Grimaldi and Mariani [5]. Nicodemus and Sudipto [6] pro-
posed a novel architecture of ANN regression model with end to end neuron connection 
to predict the finite element analysis (FEA) stress of an automobile connecting rod. An 
ANN regression model to predict to wear and tear of aircraft parts was developed by 
Paul et  al. [7]. Recently, ANN regression models have also been used in string theory 
formulation [8, 9]. In all these applications [1–9], ANN regression models were used to 
model physical quantities which are continuous and differentiable and hence these stud-
ies used either tangent hyberbolic (tanh) or sigmoid activation function which results in 
smooth and differentiable ANN output function.

Furthermore, in these applications, it is essential that developed ANN model does not 
violate any known physics laws. However, since ANNs are unaware of the real-world 
physics which are being modelled and their predictions are only based on the available 
data it is shown in literature that ANNs can sometimes learn spurious relationships due 
to scarcity of data and noise. Liano [10] was among the first researchers to highlight that 
ANN are susceptible to learning from noise in data. Furthermore, Karpatne et al. [11] 
has shown that ANNs will learn relationships which are not consistent with physical 
laws but look deceptively good on both training and test when size of data is small.

To overcome these limitations, alternate frameworks of ANNs have been proposed 
in literature. Karpatne et al. [11] proposed a novel framework for combining scientific 
knowledge of physics-based models with ANNs and coined the term physics guided 
neural networks (PGNN) for the framework.. Two steps are generally involved in the 
framework of PGNN i.e. (a) constructing hybrid-physics-data models where output of 
the physical based model is also taken as an input (b) using physics-based loss functions 
which penalizes the ANN if physics laws are not maintained. Jia [12] proposed a simi-
lar physics guided NN framework for time series data called physics guided recurrent 
neural networks (PGRNN) for transient lake temperature modelling. Zhang et al. [13] 
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presented the physics-guided convolutional neural network (PhyCNN) for data-driven 
seismic response modelling. Wang et al. [14] proposed a PGNN methodology for mod-
elling machine tool wear. Another class of neural network framework which are based 
on solving the physical laws rather than learning physics from training data are called 
physics informed neural networks (PINN). PINNs using the universal function approxi-
mator property of ANNs solve complex partial differential equation (PDE) systems [15, 
16] without any data. The performance of PINNs is comparable to many established 
PDE solvers. However, PINN face similar disadvantages as physicals based models and 
require many calibrated parameters to capture the complex physics.

The PGNN frameworks are based on penalty loss for consistency of physical param-
eters outside the input variables and are not concerned about output relationship with 
input. However, the source for all physics inconsistencies is the improper relationship 
mapped by ANN between input variables and output variables. The complete physi-
cal relationship between inputs and output is generally unknown; however, partial 
knowledge from available literature and expert opinion is available for most of these 
relationships. For example, the physics relationship between air temperature and lake 
temperature in lake temperature modelling [11] is provided by Yu et al. [17]. But since 
ANNs map highly non-linear relationships in multidimensional input space it is very dif-
ficult to infer the mapped relationship of ANN between input and output variables and 
to assess whether the known partial knowledge is consistent with the developed ANN 
model or not.

There has been significant research and many developed methods to infer input out-
put relationship of ANN classification model especially for computer vision problem 
whereas methods to infer input output relationship of ANN regression model are very 
scarce. Several authors proposed gradient based backpropgation algorithms [18–21] 
to infer feature importance of ANN classification model. It should be noted that the 
above algorithms [18–21] only work for ReLU activation function. However, most of 
ANN regression models [1–9] in engineering applications use tanh or sigmoid func-
tion hence these algorithm [18–21] cannot be used. Another method to visualize the 
pixel wise contribution to a class prediction is layer-wise relevance propagation (LRP) 
[22]. Sundarajan et al. [23] proposed a attribution method based on integrated gradients. 
Recently, Chattopadhyay et al. [24] considered ANN architecture as a structural causal 
model, and they presented a methodology to compute the causal effect of each feature 
on the output. These algorithms [22–24] provide a numerical value for contribution for 
each input feature for a particular output so these algorithms cannot be used to assess 
physics consistency of input output relation of ANN regression model. Another class of 
algorithm which interpret the input output relationship of ANN models are the methods 
based on perturbation of a particular output instance and building a local model around 
that instance. LIME (Local Interpretable Model-Agnostic Explanations) algorithm [25] 
is most notable among these algorithms. LIME algorithm is based on sampling the 
input space in neighbourhood of output point and building local interpretable model 
by minimizing weighted mean square loss function with weightage function based on 
distance metric. LIME is model agnostic i.e. no restricted on model being interpreted 
which could random forest, ANN, SVM (support vector machine) or any other machine 
learning(ML) model. Also LIME can provide explanations based on variables which need 
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not be the input variables to ML model. LIME works best for classification where only 
relative importance of inputs are required for an output prediction. Whereas for ANN 
regression models the model characteristics is required to be done in certain region and 
LIME suffers from disadvantages of non-unique local model and local model depend-
ence on parameters of weightage function.

The main aim of the work is to present a methodology to develop an ANN regression 
model which is consistent with the available physics knowledge. To do this an algorithm 
is required which would interpret the input output relationship mapped by the ANN 
regression model. Furthermore, ANN maps vastly different input and output relation-
ships in different input regions. Hence, in the present work the input output relationship 
of ANN regression model is inferred by using a multiple region wise polynomial models 
for ANN regression model. One possible method for developing these polynomials is 
by fitting the polynomial function over the ANN function values; however, there would 
be error between ANN and polynomial function and polynomial function may not cap-
ture the relationship mapped by the ANN model. Therefore, Taylor series [26] will be 
the basis for the developed the region wise polynomial function. Taylor series since it 
is based on differentials of the function they can capture the primary relationship even 
with error between Taylor polynomial and ANN function. Taylor series share one key 
property with ANNs that is, both are universal approximators. In fact, both Taylor series 
and ANN have been used to same application of solving complex partial differential 
equations [15, 16, 27–29]. A key differentiator between Taylor series and ANN is that 
ANNs are flexible to approximate any function over any scale whereas Taylor series can 
approximate any function only inside the radius of convergence. A polynomial similar 
to Taylor polynomial can be generated using LIME algorithm but a key difference is that 
LIME builds the polynomial on top of ANN model by sampling input space in the vicin-
ity of point of interest i.e. local model error behaviour would depend on model building 
process which include selection of sampling points and weightage function parameters. 
Whereas the Taylor polynomial in the current methodology doesn’t another local model 
but characterizes the ANN model based on its local differentials at point of interest. 
Hence the local behaviour error profile will depend on characteristics of ANN model.

Methodology for developing a physics consistent ANN regression model
The traditional process of developing an ANN surrogate model in engineering applica-
tions involves the following steps as shown in Fig. 1. First the data points are sampled 
within the input space using either a latin hypercube or full factorial or other sampling 
techniques. Then the output data is generated using test procedure or CAE methodol-
ogy for the selected sampled input points. The ANN regression model is fitted over the 
generated data. The predicted ANN output is correlated with generated data and regions 
in input space where accuracy is less, additional data are generated in that region. The 
process is iterated till the acceptable performance of model is reached. In this process, 
the accuracy of the predicted output is only considered.

In the proposed methodology, the ANN regression model will be optimized for pre-
diction accuracy, physics consistency as well as consistency of singular zones in the 
input space as shown in Fig. 2. Mathematically, singular zones are defined as points 
where the function is not well-behaved. Physically, singularities are points in the 
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input space where the output physical quantity behaves erratically and rapidly change 
in output is observed due to a very small change in one or more input variables. One 
of the well known physicals examples of singularity is resonance in vibrations. Gener-
ally, designers of engineering systems try to avoid running the physical system near 
singularity or design robust control system near singularity; hence identification of 
singularity region in the input space is of paramount importance to the user.

In next section, brief details regarding properties of Taylor polynomial of ANN 
function will be explained. Then the ANN inferencing algorithm is explained in two 
sub-sections. Finally applications of developed methodology on datasets will be 
presented.

Fig. 1 Process of developing an ANN surrogate model

Fig. 2 Flowchart for proposed methodology for developing physics consistent ANN models
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Properties of Taylor polynomial of ANN function
Given a training dataset with inputs x̂ = {x1, x2, x3, . . . . . . . . . . . . xk} and target output 
t(x̂) , let the ANN regression output function be NN(x̂ ) and error function between 
ANN prediction and actual output be δ(x̂) i.e.

The properties of the output function of ANN (NN(x̂ )) depends on the activation 
function used in the ANN. Using a finite higher order differentiable activation functions 
like tanh or sigmoid yields an ANN output function which is continuous and infinitely 
differentiable. Whereas using activation function like ReLU yield an ANN function 
which has zero higher order differentials. Since Taylor polynomial is based on higher 
order differentials, the present inferencing algorithm can be only used with activation 
functions like tanh and sigmoid. This is not a major hindrance since ReLU activation 
function is not used for ANN regression models in science and engineering applications. 
The output function predicted by ANN (NN(x̂ )) using a finite higher order differentiable 
activation function can be approximated using Taylor polynomial of degree p at point x̂o 
and is given as

The Taylor polynomial is only accurate if the computation point ( ̂x ) lies within the 
radius of convergence of development point ( x̂o ). The various differential of NN(x̂ ) with 
respect to inputs x̂ can be computed by using Tensorflow gradients function[15] which 
is an automatic differentiator. One thing to note here is that Taylor approximation is for 
the ANN function which includes the error function ( δ

(
x̂
)
 ) along with output function. 

It is well known fact that higher ANN function differentials don’t correlate well with 
target function differentials even when using differentials in training (Sobolov training 
[30]). However, as explained above the ANN differentials are being used to characterize 
the ANN function and not target function and hence higher differentials trust worthi-
ness is not an issue in the study. Several instances of use of higher order ANN differen-
tials for reconstruction of ANN function has been shown throughout the manuscript 
even for datasets with noise. In subsequent sections properties of ANN differentials 
and Taylor polynomial are illustrated using examples. For the sake of simplicity exam-
ples used below are functions of single input but the same principles can be extended to 
multi inputs functions.

There are many aspects of the ANN model which should be consistent with the phys-
ics laws; however, the current paper only deals with physics consistency in relationship 
between input and output variables mapped by ANN regression model. Generally, in 
engineering applications the ANN regression model are used to compute the output 
variable variation in an interested region of input sub-space for decision making pro-
cess. Hence the relationship between input and output variable are required for certain 
region for ANN regression model instead of a single point as in case ANN classification 

δ
(
x̂
)
= t

(
x̂
)
−NN

(
x̂
)
.

(1)

NN
(
x̂
)
=

p∑

n1=0

p∑
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· · ·

p∑

nk=0
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n2 ...(xk − xok)
nk

n1!n2! . . . . . . . . . nk !

∂n1+n2+n3..+nkNN

∂x1n1∂x2n2 ..∂xknk
(xo1, xo2, ..xok)n1 + n2 + n3..+nk ≤ p.
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model. Therefore, the methodology to develop Taylor polynomial approximation for 
certain region of input sub-space is outlined in next sections. Each coefficient (sign 
and value) of Taylor polynomial explains relationship between input and output vari-
able. These relationships can be checked for physics consistency based on available lit-
erature or expert opinion. With help of couple of examples the relationship explained 
by each Taylor coefficient will be illustrated here. Let t is target variable be function 
of two variables {x1, x2, } i.e. t = NN ( x1, x2) and let the  pth degree Taylor polynomial 
C00 + C10x1 + C01x2 + C20x

2
1 + C11x1x2 + C02x

2
2 . . . . . . . . . . . . . . . .+ C0px

p
2 which 

approximates target function in certain region of input space. Positive sign for Taylor 
coefficient C10 indicates target variable t increases with increase in x1 and decreases with 
decrease in value of x1 whereas negative sign indicates inversely proportional relation-
ship between t and x1 in the approximated region. The coefficient C11 explains the inter-
action effect of x1 and x2 on t i.e. if coefficient is positive then the target value increases 
with increase in x1 and x2 but simultaneous decrease in x1 and x2 will also yield increase 
in value of t. C20 shows the effect absolute value of x1 on t. The values of coefficient 
demonstrate the relative weightage of these different effects. The explanations can be 
checked with known knowledge of system being modelled. For example, the ANN sur-
rogate model of Ref. [1], models engine air flow rate and one of its input is engine speed. 
It is a well known fact that the engine air flow rate increases with engine speed irrespec-
tive of other input parameters values and the consistency of this physics relationship can 
be checked by the Taylor polynomial. An more detailed illustration of this physics infer-
encing is presented in Sect. 5.3.

Higher order differentials of ANNs

In order to understand the behaviour of higher order differentials of ANN func-
tion, let’s take a simple ANN with one input and one hidden layer of “ l" neurons 
and one output. Let’s weights and biases for input layer to hidden layer be given as 
wih1,wih2, . . . . . . . . .wihl and bih1, bih2, . . . . . . . . . bihl and hidden layer to output layer be 
given as who1,who2, . . . . . . . . .whol and bho1, bho2, . . . . . . . . . bhol . Let the hidden layer have 
an activation function f1(.) and output layer is a linear layer. The output of each of l neu-
rons is given as

The output function NN
(
x̂
)
 can be given as

It can be seen from Eq. (2) that for infinitely differentiable activation functions ( f1(.)) 
like tanh or sigmoid function the ANN function (NN(x̂ )) will be infinitely differentiable 
and the function higher differentials will never vanish to zero. This is true even when 
data is generated from simple functions like x2 and x5 whose higher differentials vanish 
to zero. For activation function like ReLU whose higher order differentials from second 
differential is zero, the ANN function will have higher order differentials as zeroes. The 

h1 = f1(wih1 ∗ x + bih1), h2 = f1(wih2 ∗ x + bih2), hl = f1(wihl ∗ x + bihl)

(2)NN
(
x̂
)
=

l∑

i=1

whoi ∗ hi + bhoi.
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same conclusions can be extended to ANN with multiple hidden units and in practice it 
holds true.

To visualize the behaviour of higher order differentials of ANN function, two artifi-
cial datasets were used to train ANN with ReLU and tanh activation function. 100 uni-
form data points for x were taken from interval [− 4, 4] and target output y is generated 
using two analytical functions Sin(x) and x2 . The ANN used here has 3 hidden layer with 
each layer having 15 neurons. The datasets can be modelled with lesser hidden layers 
and lesser number of neurons but these values were chosen so the observed behaviour 
would be valid for most of practically ANNs used for regression. For all datasets in the 
manuscript, the inputs and output values are normalized to have mean value of zero 
and variance value of one before feeding to the ANN model. Total data was split into 
70–15–15 training, validation and test data sets and MSE along with regularization loss 
was taken as loss function and ANN was trained using gradient decent. It is well know 
that the first order differential is discontinuous and its higher order differentials are zero 
for output function of ANN while using ReLU activation function. This has been con-
firmed by the results from example ANN model using ReLU activation function but 
has not been shown in manuscript for sake of brevity. Hence, Taylor polynomial cannot 
be used to approximate ANN function when using ReLU activation function. Figure 3 
shows the results from the ANN function while using tanh activation function which 
includes error function and some higher derivatives. It can be observed from Fig. 3 that 
the derivates from ANN function are continuous when using tanh activation and hence 
the ANN function can be approximated using Taylor polynomial.

Degree of Taylor polynomial

A zero degree Taylor polynomial is the function value at the development point itself 
and has zero radius of convergence. Increasing the degree of Taylor polynomial increases 
the radius of convergence at the development point. Radius of convergence is the dis-
tance from development point beyond which the Taylor series doesn’t converge to the 
function value. However, computing radius of convergence is computationally expensive 
and hence a simple method would be used to compute the acceptable region of approxi-
mation by selecting a threshold error and comparing it with error between Taylor pol-
ynomial and ANN function. If the error is less than the threshold error than Taylor 
polynomial can be used to approximate in that region.

To understand the effect of degree of Taylor polynomial on approximation capabilities 
of Taylor polynomial, an artificial data set similar to previous studies [31] is generated 
with 200 uniform points in the range of x of [−  7.5,7.5] and target output y is gener-
ated using Sin(x)x  . Same 3 layers ANN architecture with tanh activation function is used. 
The error between Taylor polynomial and ANN function for different degrees of Taylor 
polynomial along with error function is plotted in Fig. 4. It can be seen from Fig. 4 that 
error decreases as degree Taylor polynomial increases. The acceptable region of approxi-
mation of particular degree of Taylor polynomial can be accessed by taking a suitable 
threshold error such as 0.02 or 0.05.

For a multi-variable input ANN function, the acceptable region of approximation may 
be different in different input variable directions. Also it is very difficult if not impossible 
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to visualize the error function or ANN function as function of input variables for a 
multi-variable.

Singularities in ANN functions

Taylor series cannot approximate function accurately in the singularity region. Radius 
of convergence of Taylor polynomial is severely reduced if development point is near 
the singularity. To show the Taylor polynomial behaviour near singularity, an artificial 
data with singularity is generated with 100 uniform points in the range of x of [− 4, 4] 

Fig. 3 Results of ANN output function using tanh activation function
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and target output y is generated using x2 + 1

(x−1)2+0.05
 . Same 3 layers ANN architec-

ture with tanh activation function is used. The generated dataset and error function 
are shown in Fig. 5. It can be seen from Fig. 5a that the singularity zone arises around 
x =1 and also it difficult to predict the singularity just from observing error function 
plot in Fig. 5b.

Taylor polynomial of 7th degree is used to approximate the ANN function with 3 dif-
ferent development points ( xd ). The three development points are chosen such that 
first point is far away from singularly, second point is near to the singularity and third 
point is at the singularity. The error between ANN function and Taylor polynomial for 

Fig. 4 Errors of Taylor polynomials of different degrees

Fig. 5 Data set and error function of Polynomial function with singularity
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these 3 development points is shown in Fig. 6. For the development point which is far 
from singularity, the acceptable region of approximation is more in the direction oppo-
site to singularity as compared to the direction towards the singularity. Moreover, it can 
be observed the acceptable region of approximation significantly reduces as distance 
between development points and singularity reduces. Taking the development point at 
singularity the acceptable region of approximation is very small and the error increases 
very sharply even at a very small distance from development point. Hence, using the 
Taylor polynomial the singularities in ANN function can be identified.

ANN regression model inferencing algorithm
In this section, the ANN inferencing algorithm will be presented. The inference algo-
rithm will decompose ANN function into several region-wise Taylor. The algorithm is be 
divided into two major sections namely (a) computation of acceptable region of approxi-
mation of a Taylor polynomial for a given development point, and (b) strategy for selec-
tion of development points to envelope the input sub-space.

Computation of acceptable region of approximation for a ANN Taylor polynomial 

with a given development point

The computation of acceptable region of approximation is significantly complicated for 
multi variable function as compared to a single variable function. For even a single vari-
able function as seen from Fig. 6 the acceptable region of approximation is different in 
different directions i.e. xd +�x and xd −�x . Given a multi-variable ANN functions 

Fig. 6 Error between ANN function and Taylor polynomial using different development points
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NN {x1, x2, x3, . . . . . . . . . . . . xk} with a development point {x1d , x2d , x3d, . . . . . . . . . . . . xkd}  
the possible directions of traversals would be infinite and may be represented by any 
possible unit vector in the input space.

To illustrate the behaviour of error function between ANN function and Taylor pol-
ynomial around the development point for a multi-variable function a two variable 
data set is generated similar to Ref. [32]. A uniform grid of 400 points are generated 
within the range of x and y taken as [-2, 2] and output target points z is generated 
using the function x ∗ exp(−(x2 + y2)).Same ANN architecture with tanh activation 
function is used as before. The output function and error function for two variable 
dataset is shown in Fig. 7.

Let the threshold error for computing acceptable region of approximation be 0.005. 
In this study, absolute error is considered as threshold error, but the algorithm is also 
applicable when relative error or percentage error is considered as threshold error. 
The Taylor polynomial is computed at the input data points and error between ANN 
function and Taylor polynomial as a function of distance from development point 
is shown in Fig.  8a. It can be seen as the distance from development increases the 
error also increases. Furthermore, for the same distance from development point dif-
ferent values of errors are observed based on the direction of the evaluation point 
from development point. In Fig.  8b, the data points are shown for which the error 
is within the threshold error. An important thing to observe from Fig. 8b is that the 

Fig. 7 Two variable output and error function

Fig. 8 Behaviour of error in 2 variable input space
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acceptable region of approximation is not unique i.e. region A of  x ∈ [−0.1, 0.1] and  
y ∈ [−0.6, 0.6] or region B of x ∈ [−0.3, 0.3] and y ∈ [−0.2, 0.2] can both be considered 
as acceptable region of approximation.

Based on observed behaviour an algorithm is developed and presented below to 
compute the acceptable region of approximation for a Taylor polynomial of a multi-
variable ANN functions NN {x1, x2, x3, . . . . . . . . . . . . xk}  with a given development 
point {x1d , x2d , x3d, . . . . . . . . . . . . xkd}.

Algorithm:

Step 0: Check all inputs for consistency

Step 1: Repeat step 2-3 for i=1 to k (number of input variables)

Step 2: Compute the error of the Taylor polynomial in dimension around the development point i.e. 

compute error or Taylor polynomial at point’s { 1, 2, 3, … , + Δ ……… } (Δ should take 

positive and negative values)

Step 3: Compute maximum Δ within which the error is less than threshold error in both positive 

and negative directions of Δ and select minimum of those two values and it is the maximum or 

limiting  traversal length in each input i direction ( )

Step 4: Develop a regular grid enveloping the domain defined by 1 [ 1 − 1, 1 + 1],

2 [ 2 − 2, 2 + 2] , 3 [ 3 − 3 , 3 + 3]. . . [ − , + ]. 

If Taylor polynomial error for the grid is within threshold error then stop the algorithm and this region 

is acceptable region of approximation else go to next step. For simplicity let us represent the traversal 

length in each direction as and since this can be considered as zero iteration the limiting lengths 

can be denoted as 0 = .

Step 5: Generate two acceptable and not-acceptable length arrays and which represents 

the traversal lengths in each variable direction within threshold error and greater than threshold error. 

Initialize as zeroes and .

Step 5: Repeat step 6 to 8 (iteration j) until convergence criterion is met

Step 6: Generate a grid of data points using ANN function for region 1 [ 1 − 1 , 1 + 1 ],

2 [ 2 − 2 , 2 + 2 ], 3 [ 3 − 3 , 3 + 3 ]……… .… . . [ − , + ]

and compute error of Taylor polynomial in the region where = ( + )/2.

Step 7: If region is within threshold error

=

else

=

Step 8: Check convergence criteria. If a convergence criterion is met go to step 9 otherwise got to step 

6

Step 9: Output the acceptable region of approximation as 1 [ 1 − 1 , 1 + 1 ],

2 [ 2 − 2 , 2 + 2 ], 3 [ 3 − 3 , 3 + 3 ]…… [ − , + ]

The convergence criteria can be a limit on maximum iterations or a minimum limit 
on distance between �xcai and �xncai . If the limit on maximum iterations has reached 
and still algorithm couldn’t find any non-zero region within the threshold error or 
detected region size is too small based on criteria then the development point can be 
considered as a singularity. The algorithm will be illustrated on two variable dataset at 
development point (0, 0). The algorithm is illustrated on the two variable data. Initially, 
5th degree Taylor polynomial is computed in x and y direction by keeping other co-
ordinate(s) constant at the development point. The error limits in x and y directions i.e. 
xlim1 and xlim2 are estimated as 0.375 and 0.8 for threshold error of 0.05. The error 
between ANN function and Taylor polynomial as a function of distance from develop-
ment point in x and y direction is shown in Fig. 9a, b. A uniform grid of 100 points is 
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generated in initial region of x ∈ [−0.375, 0.375] and y ∈ [−0.8, 0.8 ] and maximum 
absolute error for this region is computed. For this case the computed error is greater 
than threshold error and the first iteration region is computed as  x ∈ [− 0.375+0

2 , 0.375+0
2 ] 

and y ∈
[
− 0.8+0

2 , 0.8+0
2

]
 i.e.x ∈ [−0.1875, 0.1875] and y ∈ [−0.4, 0.4] . In this first itera-

tion region, again a uniform grid of 100 points is generated and error of Taylor polyno-
mial is computed. In the first iteration region, the error is less than the threshold error 
and hence the second iteration region is computed as x ∈ [− 0.375+0.1875

2 , 0.375+0.1875
2 ] 

and y ∈
[
− 0.8+0.4

2 , 0.8+0.4
2

]
 i.e.x ∈ [−0.28125, 0.28125] and y ∈ [−0.6, 0.6].The same pro-

cess is continued till convergence criteria is met. The error profiles for region generated 
by the algorithm are shown for initial, first and fifth iterations are shown in Fig. 9c–e for 
illustration purpose. If we consider maximum 5 iterations as stopping criteria then the 
acceptable region of approximation for Taylor polynomial at development point (0, 0) is 
x ∈ [−0.19921875, 0.19921875] and y ∈ [−0.425, 0.425].

The length of traversal in positive and negative direction is kept same in the present 
algorithm to simplify the strategy of selection of development points which is pre-
sented in next section. Furthermore, the splitting of limiting lengths by two is chosen 
to get convergence quicker with iterations and to avoid stalling of algorithm in singu-
larity zones.

The algorithm is also applied to 5 variable dataset used in literature [33].Generally, most 
of the ANN regression models in science and engineering applications have input vari-
ables less than 10 and in most cases there are less than 5. The input range of each of the 5 
variables is taken as [0, 1]  and relationship between target output and the inputs is given 
by t = 10sin(πx1x2)+ 20(x3 − 0.5)2 + 10x4 + 5x5.1200 point are sampled from input 
space using latin hypercube sampling and output values for these inputs points. The same 
3 layer architecture with tanh function is used to train the data. The proposed algorithm 
will be used to find the region of acceptable approximation for  3rd degree at develop-
ment point [0.5, 0.5, 0.5, 0.5, 0.5] with threshold error as 0.01. The initial lengths around 
the development point which are within the threshold error in the 5 variables direc-
tion is computed as xlim1 = 0.12, xlim2 = 0.15, xlim3 = 0.15, xlim4 = 0.3, xlim5 = 0.5. 
The initial region for investigation is taken as x1ϵ [0.38, 0.62], x2ϵ [0.35, 0.65], x3ϵ [0.35, 
0.65], x4ϵ [0.2, 0.8], x5ϵ [0, 1.0]. In each iteration, uniform grid of 3125 points (5 points 
in each input direction) is used to evaluate the acceptable region of approximation. The 
region evaluated in each iteration along with maximum error is shown in Table 1. The 
region of acceptable approximation considering convergence criteria as 5 maximum 
iterations is given as x1ϵ [0.455, 0.545], x2ϵ[0.44375, 0.55625], x3ϵ[0.44375, 0.55625], 
x4ϵ[0.3875,0.6125], x5ϵ [0.3125,0.6875].

Strategy for selection of development points

This section details a strategy for selection of development points to approximate a given 
input space with region wise Taylor polynomials. The algorithm presented here is geared 
towards minimizing the total number of iterations and error between ANN function and Tay-
lor polynomial and is not concerned with the number of regional Taylor polynomials required 
to approximate the input space. The inputs to algorithm are input space to be approximated, 
threshold error, criteria for minimum acceptable region below which the region is to be 
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considered as a singularity, minimum and maximum value of degree for Taylor polynomial 
and number of sample to be drawn for initial step. The proposed algorithm is detailed below.

Fig. 9 Illustration of algorithm for computation of acceptable region of approximation for two variable 
function

Table 1 Regions for 5 variables function for various iterations

Iteration Region Maximum error between ANN 
function and Taylor polynomial

Initial x1ϵ [0.38,0.62], x2ϵ [0.35,0.65], x3ϵ [0.35,0.65], x4ϵ [0.2,0.8], x5ϵ 
[0.1,0.9]

0.3300

1st x1ϵ [0.44,0.56], x2ϵ [0.425,0.575], x3ϵ [0.425,0.575], x4ϵ [0.35,0.65], 
x5ϵ [0.25,0.75]

0.0170

2nd x1ϵ [0.47,0.53], x2ϵ [0.4625,0.5375], x3ϵ [0.4625,0.5375], x4ϵ 
[0.425,0.575], x5ϵ [0.375,0.625]

0.0022

3rd x1ϵ [0.455,0.545], x2ϵ [0.44375,0.55625],x3ϵ [0.44375,0.55625], x4ϵ 
[0.3875,0.6125], x5ϵ [0.3125,0.6875]

0.0081

4th x1ϵ [0.4475,0.5525], x2ϵ [0.434375,0.565625], x3ϵ 
[0.434375,0.565625], x4ϵ [0.36875,0.63125], x5ϵ [0.28125,0.71875]

0.0140

5th x1ϵ [0.45125,0.54875],x2ϵ [0.4390625,0.5609375],x3ϵ 
[0.4390625,0.5609375],x4ϵ [0.378125,0.612875], x5ϵ 
[0.296875,0.703125]

0.0120
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Algorithm:

Step 0: Check all inputs for consistency. Let the input space to be approximated be given as 

1 [ 1 , 1 ], 2 [ 2 , 2 ], 3 [ 3 , 3 ],…………… [ , ]

Step 1: Select n samples of developments points inside the input space based on either latin hyper 

cube sampling or random sampling or any other sampling method. Let each development point be  

{ 1 , 2 , 3 , ………… } where s is from 1 to n.

Step 2: Repeat step 3-4 for value of Taylor degree of polynomial from minimum to maximum

Step 3: Compute the acceptable regions of approximation for all the sample points. Remove the 

sample which may be a singularity regions based on criteria for minimum acceptable region. Let an 

acceptable region for a sample be represented as 1 [ 1 − ∆ 1 , 1 + ∆ 1 ], 2 [ 2 −

∆ 2 , 2 + ∆ 2 ], 3 [ 3 − ∆ 3 , 3 + ∆ 3 ],…………… [ − ∆ , + ∆ ]

Step 4: Compute mean { 1, 2 …… } and variance { 1
2
1
, 2

2 …… 2} of traversal length for filtered 

sample development points (nf) in each input direction i.e. =
1
∑

=1 and 2 =

1
∑ ( − )2=1 . Compute the vector = { 1 − 1, 2 − 2 …… . . … , − }.  

Step 5: Select the degree of Taylor polynomial as the degree with maximum Euclidean norm of the 

vector i.e. √( 1 − 1)
2 + ( 2 − 2)

2 ………… .+( − )2

Step 6: Repeat step 7 for l=1 to k (number of dimensions of input data)

Step 7: Compute spl=ceil(
−

2( − )
) (round up to the nearest integer) and divide the length into 

1 [ , ] into sp segments i.e. 1 [ , +
( − )

] , 1 [ +
( − )

, + 2 ∗
( − )

] , 1 [ +

2
( − )

, + 3 ∗
( − )

] ,…………. 1 [ + ( − 1) ∗
( − )

, + ] . The centre of each of these 

segments ( +
( − )

2∗
, +

3∗( − )

2∗
, +

5∗( − )

2∗
,…… . + (2 − 1)

( − )

2∗
) is taken as a co-ordinate 

for development point

Step 8: Generate a full factorial of co-ordinates in individual directions to form total nt= 1 ∗ 2 ∗

3 … . . development points

Step 9: Repeat step 10 -11 for m=1 to nt (number of development point)

Step 10: Each development points can be represented by { 1 + (2 1 − 1)
( 1 − 1 )

2∗ 1

, 2 + (2 2 − 1)
( 2 − 2 )

2∗ 2

,

3 + (2 3 − 1)
( 3 − 3 )

2∗ 3

, ……………… + (2 − 1)
( − )

2∗
} where d1,d2,d3, …… dk vary from 1 to 

1, 2, 3 … . . respectively. The expected acceptable region of approximation for each

development point is given as 1 [ 1 + ( 1 − 1)
( 1 − 1 )

1

, + 1 + ( 1)
( 1 − 1 )

1

( − )
] , 2 [ 2 +

( 2 − 1)
( 2 − 2 )

2

, 2 + ( 2)
( 2 − 2 )

2

] , 3 [ 3 + ( 3 − 1)
( 3 − 3 )

3

, 3 + ( 3)
( 3 − 3 )

3

] ,… [ + ( −

1)
( − )

, + ( − 1)
( − )

] . Compute the error between ANN function and the Taylor polynomial 

in the expected acceptable region of approximation of the development point.

Step 11: If the computed error is less than the threshold error then output acceptable region of 

approximation for the development point as the expected value and go to next iteration if final 

iteration go to step 12

Else compute the acceptable region of approximation of the development point

If the computed region is smaller than criteria for minimum acceptable region then consider 

region as singularity and go to step 12

Else if computed acceptable region of approximation is smaller than criteria for minimum 

acceptable region the go to step 0 with input space to be approximated as expected acceptable 

region of approximation

Step 12: Check if whole input sub-space is enveloped if so output Taylor polynomial for each region.

The basic idea behind the algorithm is to sample some development points in the input 
space in order to estimate the average region of approximation and use this average 
region of approximation as expected region of approximation to distributed develop-
ment points uniformly across the input space. For these uniformly distributed develop-
ment points if the actual region of approximation is larger than the average region of 
approximation then for these development points the region of approximation can be 



Page 17 of 29Rajasekhar Nicodemus  Adv. Model. and Simul. in Eng. Sci.            (2022) 9:11  

taken as average region of approximation. For those development points whose actual 
region of approximation is smaller than the average region of approximation the average 
region of approximation is divided into further sub-domains. This sub division process 
is done by considering the average region of approximation around the failed develop-
ment point as the region to be approximated and samples points can be taken in this 
region and the whole steps for this region is repeated. Using mean of sampled devel-
opment points region of approximation, it may be reasonably to expect around half of 
the development points in the input space to have actual region of approximation larger 
than average region of approximation so in order increases the number points having 
larger than expected region of approximation, mean minus standard deviation of region 
of approximation of sampled development points is used.

The algorithm will be illustrated on 5 variable data set to approximate the ANN func-
tion in input space of x1ϵ [0.4, 0.6], x2ϵ [0.4, 0.6], x3ϵ [0.4, 0.6], x4ϵ [0.4, 0.6], x5ϵ [0.4, 0.6]. 
The minimum and maximum degree of Taylor polynomial is taken as 2 and 3, respec-
tively. The threshold error is taken as 0.01 and stopping criteria for acceptable region 
of approximation is taken as 5 maximum iterations. The criterion for singularity is any 
acceptable traversal length being less than 0.01. Three samples developments points 
were taken as [0.45, 05.0.45, 0.45, 0.45] (point A), [0.50, 0.50.0.50, 0.50, 0.50] (point B), 
and [0.55, 0.55.0.55, 0.55, 0.55] (point C). The acceptable region of approximation for 
these points for 2nd and 3rd degree Taylor polynomial is presented in Tables 2 and 3. 
The detailed computation for point B using 3rd degree Taylor is already presented in 
preceding section. It can be clearly seen from Tables  2 and 3 that the norm of γ vec-
tor is larger for  3rd degree Taylor polynomial as compared to a 2nd Taylor polyno-
mial and hence degree of Taylor polynomial to approximate ANN function is taken 
as 3. The computed number of segment in each direction can be given as{sp1,sp2, 

Table 2 Regions of acceptable approximation for 2nd degree Taylor polynomial

Development points �xca1 �xca2 �xca3 �xca4 �xca5

Point A 0.037500 0.037500 0.046875 0.046875 0.084375

Point B 0.032812 0.032812 0.032812 0.065625 0.109375

Point C 0.028125 0.028125 0.036562 0.079062 0.126562

Mean 0.328123 0.328123 0.038749 0.063854 0.106770

Std deviation 0.003827 0.003827 0.005945 0.013199 0.017320

µ− σ(γ ) 0.324296 0.324296 0.032804 0.050655 0.08945

Table 3 Regions of acceptable approximation for 3rd degree Taylor polynomial

Development Points �xca1 �xca2 �xca3 �xca4 �xca5

Point A 0.051562 0.061875 0.051562 0.10312 0.154687

Point B 0.045000 0.056250 0.056250 0.11250 0.187500

Point C 0.048750 0.048750 0.056250 0.15000 0.168750

Mean 0.048437 0.055625 0.054687 0.12187 0.170312

Std deviation 0.002688 0.005375 0.002209 0.02025 0.013441

µ− σ(γ ) 0.045749 0.050087 0.052478 0.10162 0.156871
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 sp3,sp4,sp5} = ceil{ 0.2
2∗0.045749 ,

0.2
2∗0.050087 ,

0.2
2∗0.052478 ,

0.2
2∗0.10162 ,

0.2
2∗0.156871} = ceil{2.1858,1.99

65,1.9055,0.9840,0.6374} = {3,2,2,1,1}. Hence the total input space will be divided into 
12 (3*2*2*1*1) regions with 12 developments points. The co-ordinates of development 
points along with expected acceptable region of approximation is given in Table 4. It can 
be observed from Table 4 that the error in an expected acceptable region of approxima-
tion is less than threshold error for all but one sub region. For this region, the region of 
approximation would be computed by taking this region as baseline input space in next 
iteration.

Application of developed algorithm
In the preceding sections, the methodology to develop physics consistent ANN using 
inferencing algorithm is detailed. In, this section, the application of developed method-
ology has been illustrated on different datasets. Four benchmarking studies are provided 
which highlight different aspects of developed algorithm. In the first study, the differ-
ence between developed algorithm and LIME algorithm are detailed. The second study 
shows the singularity detection capabilities of the developed algorithm. The third and 
fourth studies show an example of interpretation of physics consistency using the devel-
oped algorithm and development of physics based loss function to obtain physics con-
sistent ANN model.

Comparison with LIME

In this case study, the results from LIME algorithm will be compared with proposed 
methodology. An ANN model with 3 layers and 20 neurons each was built for 2-vari-
able function ( f = x ∗ exp(−(x2 + y2))) which was modified by adding of Gaussian 
noise of zero mean and 0.01 standard deviation of 0.01. The addition of noise was done 
to simulate real world dataset behaviour. The modified 2-variable function along with 
ANN model performance is show in Fig. 10. As mentioned before in the introduction 
LIME builds a local model over the ANN model by sampling input space in the vicin-
ity of point of interest whereas the current methodology characterises the ANN model 

Table 4 Development points and expected region of approximation

Development point Expected region of approximation Maximum 
absolute 
error

[0.4333, 0.45, 0.45, 0.5, 0.5] x1ϵ [0.4, 0.4667], x2ϵ [0.4, 0.5], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.003518

[0.4333, 0.45, 0.55, 0.5, 0.5] x1ϵ [0.4, 0.4667], x2ϵ [0.4, 0.5], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.003519

[0.4333, 0.55, 0.45, 0.5, 0.5] x1ϵ [0.4, 0.4667], x2ϵ [0.5, 0.6], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.004026

[0.4333, 0.55, 0.55, 0.5, 0.5] x1ϵ [0.4, 0.4667], x2ϵ [0.5, 0.6], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.002399

[0.5, 0.45, 0.45, 0.5, 0.5] x1ϵ [0.4667,0.5333], x2ϵ [0.4, 0.5], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.003433

[0.5, 0.45, 0.55, 0.5, 0.5] x1ϵ [0.4667,0.5333], x2ϵ [0.4, 0.5], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.007536

[0.5, 0.55, 0.45, 0.5, 0.5] x1ϵ [0.4667,0.5333], x2ϵ [0.5, 0.6], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.010849*

[0.5, 0.55, 0.55, 0.5, 0.5] x1ϵ [0.4667,0.5333], x2ϵ [0.5, 0.6], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.009431

[0.5667, 0.45, 0.45, 0.5, 0.5] x1ϵ [0.5333,0.6], x2ϵ [0.4, 0.5], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.004257

[0.5667, 0.45, 0.55, 0.5, 0.5] x1ϵ [0.5333,0.6], x2ϵ [0.4, 0.5], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.003938

[0.5667, 0.55, 0.45, 0.5, 0.5] x1ϵ [0.5333,0.6], x2ϵ [0.5, 0.6], x3ϵ [0.4, 0.5], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.005373

[0.5667, 0.55, 0.55, 0.5, 0.5] x1ϵ [0.5333,0.6], x2ϵ [0.5, 0.6], x3ϵ [0.5, 0.6], x4ϵ [0.4,0.6], x5ϵ [0.4,0.6] 0.003434
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locally by using its local differentials. Furthermore, the local model from LIME algo-
rithm depends on parameters chosen i.e. number of samples and standard deviation of 
weightage function. Moreover, since LIME model building involves sampling, different 
model would be outputted for different runs of LIME algorithm. This is confirmed by 
using the regression tutorial provided by authors of lime package (https:// github. com/ 
marco tcr/ lime). But the Taylor polynomial developed from current methodology is 
always unique. Below the equations of Taylor polynomial along with 4 LIME instances 
of similar polynomials generated at development point of (0, 0) are presented. For the 
4 LIME models, the all sampling points are taken in the region of x ϵ [− 0.4, 0.4] and 
y ϵ [− 0.4, 0.4]. It is interesting to note that the coefficient of x and y terms which are 
equal to ANN first order differentials at (0, 0) are close to target function differential 
values of 1 and 0 for all the polynomials. Also, it can be observed that for different LIME 
instances the coefficients values and their signs are quite different hence offer different 
explanations of the ANN model (for instance, value of x3,x2y and xy2 coefficient and sign 
and value  y4  coefficient). Hence it is difficult for users to interpret and understand the 
physics consistency of ANN model by using LIME algorithm. It should be noted that 
the LIME explanation variation is even more significant in the tutorial provided by the 
authors but in this test case the variation was reduced due to sampling in small domain. 
Furthermore, the error profile between the ANN model and the 5 different polynomi-
als in the region of x ϵ [− 0.4, 0.4] and y ϵ [− 0.4, 0.4] is computed using regular grid of 
2500 points and is plotted in Fig. 11. Couple of things can be observed from error plots. 
Firstly, the range of error plots of Taylor polynomial and LIME 3 is similar but coeffi-
cients of some terms are vastly different. More importantly, it can be observed the Taylor 
polynomial error is less and is of one sign in the neighbourhood of development point 
which is desirable characteristics but this is not true for the LIME polynomial. This due 
to fact Taylor polynomial characterises the ANN model whereas LIME algorithm built 
a model on top of ANN. Moreover, using the current methodology Taylor polynomials 
with any user specified accuracy of ANN model can be built which is not possible with 
LIME. From a theoretical point of view the proposed Taylor polynomial can captures 
the behaviour of ANN model more efficiently than LIME algorithm. In summary, the 
major differences between proposed methodology and LIME model are (i) LIME built a 
local model in neighbourhood of development point whereas the proposed methodol-
ogy develops a Taylor polynomial using local differentials which characteristics the ANN 

Fig. 10 Two variable output with noise and ANN model performance

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
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Fig. 11 Error profile of LIME models and current methodology

Fig. 12 Prediction vs actual for 5 variable function with singularity
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model (ii) LIME model is parameter dependent whereas proposed methodology is not 
(iii) Taylor polynomial from current methodology is unique whereas LIME outputs dif-
ferent polynomial for different runs (iv) proposed methodology can be used to develop 
series of Taylor polynomial to approximate ANN model within a given error limit which 
is not possible with LIME algorithm.

Taylor polynomial:

LIME 1(number of samples = 100, variance = 0.05, Run 1)

LIME 2(number of samples = 100, variance = 0.05, Run 2)

LIME 3(number of samples = 500, variance = 0.1, Run 1)

LIME 4(number of samples = 500, variance = 0.1, Run 2)
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Singularity detection

One of the proposed usages of the proposed methodology is for detection of singularity 
zones in ANN prediction space. As seen from Sect. 3.3, Taylor polynomial has very min-
imal radius of convergence when the development point is near a singularity. Making 
use of this property, the singularity can be detected if the region of approximation of 
development point is less than threshold value. The threshold can be selected on heuris-
tic judgement and previous experience. In a section, a subpart to proposed methodology 
is used to detect singularity. It is difficult from real world datasets to ascertain whether a 
region is actual singularity or not and hence an artificial dataset will used to confirm the 
accuracy of proposed methodology. 5 variable function which was used in Sect. 4.2 will 
be slightly modified to have singularity at x4 = 0.5 and x5 = 0.5 i.e. 
t = 10sin(πx1x2)+ 20(x3 − 0.5)2 + 10x4 +

4

(x5−0.5)2+(x4−0.5)2+0.05
 . 2500 input points 

were generated using latin hypercube sampling. An ANN model of 3 layers with 15 neu-
rons was built using the data. The performance of the developed ANN model is shown 
in Fig. 12. Two developed points are taken as point A [0.49, 0.49, 0.49, 0.49, 0.49] which 
is in close proximity to the singularity and point B [0.80, 0.80, 0.80, 0.80, 0.80] which is 
far away from singularity. Using the methodology in Sect. 4.1 the region of approxima-
tion is computed for both development points with maximum error of 0.01 and stopping 
criteria of 5 iterations. The initial lengths around the development point A which are 
within the threshold error in the 5 variables direction is computed as 
xlim1 = 0.06, xlim2 = 0.08, xlim3 = 0.06, xlim4 = 0.03, xlim5 = 0.05. 

z =0.00252+ 1.01668− 0.00837y

− 0.08259x
2 − 0.04577xy− 0.00881y

2

− 0.92999x
3 + 0.01952x

2
y− 1.14160xy

2

+ 0.02128y
3 + 0.44339x

4 + 0.17175x
3
y

+ 0.04656x
2
y
2 + 0.12096xy

3 + 0.01768y
4

Fig. 13 Actual vs predicted for the yatch hydrodynamics ANN model
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Similar for point B the initial lengths are computed as xlim1 = 0.08, xlim2 = 0.15, xlim3

= 0.1, xlim4 = 0.08, xlim5 = 0.1 . The computed region of approximation for point A 
and B are x1ϵ[0.485312,0.4946875], x2ϵ[0.48375,0.49625], x3ϵ[0.4853125,0.4946875], 
x4ϵ [0.48765625,0.49234375], x5ϵ [0.48609375,0.49390625] and x1ϵ[0.79,0.81], 
x2ϵ[0.78125,0.81875], x3ϵ[0.7875,0.8125], x4ϵ [0.79,0.81], x5ϵ [0.78125,0.81875] respec-
tively. It can be observed that the region of approximation is significantly smaller for 
development point A as compared to development point B especially in x4 and x5 direc-
tions therefore one can infer that singularity exists near to development point A in x4 
and x5 directions. Hence, it can be seen that present methodology can help locate singu-
lar zones in ANN prediction space. It should also be noted the methodology only detects 
singularity in ANN prediction and not the actual output space.

Interpretation of physics consistency

For the next 2 studies, datasets were chosen from UCI repository maintained by the 
center for machine learning and intelligent systems at the University of California [34]. 
The first dataset will be used to illustrate the usage of the inferencing algorithm to obtain 
input output relations of ANN model which can be assessed for physics consistency. The 
first data set is the yatch hydrodynamic dataset generated using full scale experiments 
performed at delft ship hydromechanics laboratory using 22 different hull forms [35]. 
The data set contains 308 data points with 6 input variables i.e. longitudinal position of 
the center of buoyancy, prismatic coefficient, length-displacement ratio, beam-draught 
ratio, length-beam ratio, and Froude number and one output variable which is the resid-
uary resistance of the ship hull. In first step, the regression model was developed from 
this. An ANN with 3 hidden layer each having 20 neurons was developed for this data. 
The ANN model prediction of residuary resistance as compared to actual resistance is 
shown in Fig. 13.

In next step, the inferencing algorithm would be applied to total input space or impor-
tant sub-spaces. For the sake of brevity, the inferencing algorithm is illustrated for a sin-
gle input sub-space: centre of buoyancy(x1) ϵ [−2.4, − 2.6], prismatic coefficient  (x2) ϵ 
[0.545, − 0.55], length-displacement ratio  (x3) ϵ [4.75, 4.79], beam-draught ratio  (x4) ϵ [3, 
3.06], length-beam ratio  (x5) ϵ [3, 3.06], Froude number(x6) ϵ [0.418, 0.42]. Two random 
points A [− 2.5, 0.55, 4.75, 3, 3, 0.42] and B [− 2.4, 0.545, 4.77, 3, 3, 0.418] were sampled 

Table 5 Development points and expected region of approximation (yatch hydrodynamics)

Development point Expected region of approximation Maximum 
absolute 
error

[− 2.45, 0.5475, 4.77, 3.03, 3.03, 0.419]
Region A

x1ϵ [− 2.4, − 2.5], x2ϵ [0.545, 0.55], x3ϵ [4.75, 
4.79], x4ϵ [3,0.6], x5ϵ [3,3.06], x6ϵ [0.418,0.42]

0.006311

[− 2.55, 0.5475, 4.77, 3.03, 3.03, 0.419]
Region B

x1ϵ [− 2.5, − 2.6], x2ϵ [0.545, 0.55], x3ϵ [4.75, 
4.79], x4ϵ [3, 0.6], x5ϵ [3, 3.06], x6ϵ [0.418, 0.42]

0.006291
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in the input sub space. The region of approximation for an 2nd degree Taylor polyno-
mial with threshold error of 0.1 was computed using algorithm in Sect. 4.1. The values 
of region of acceptable approximation is not presented for the sake of brevity. Based on 
the average minus standard deviation values of acceptable length of approximation two 
development points in the input sub-space was selected. As seen from Table 5 the abso-
lute error in both the expected region of approximation is less than the threshold error 
and hence the Taylor polynomial with initial development point can be used to approxi-
mate these regions.

The Taylor polynomial for only region A is given below for the sake of brevity.
Region A:

where 

xa1 =
(x1+2.45)
1.51076

, xa2 =
(x2−0.5475)
0.023252

, xa3 =
(x3−4.77)
0.25264

, xa4 =
(x4−3.03)
0.54730

, xa5 =
(x5−3.03)
0.24795

, xa6 =
(x6−0.419)
0.10077

y− 10.49535

15.13585
= 2.25929+ 0.12178xa1 − 0.08827xa2

+ 0.26720xa3 − 0.45277xa4 − 0.58052xa5

+ 4.92001xa6 + 0.20525
x2a1

2
− 0.12660

x2a2

2

− 0.04975
x2a3

2
+ 0.03043

x2a4

2
+ 0.05494

x2a5

2

+ 1.80831
x2a6

2
− 0.06432xa1xa2 − 0.02936xa1xa3

− 0.03044xa1xa4 − 0.04831xa1xa5

+ 0.13864xa1xa6 + 0.07139xa2xa3 − 0.03906xa2xa4

+ 0.00632xa2xa5 + 0.17492xa2xa6 + 0.01781xa3xa4

+ 0.01473xa3xa5 − 0.11590xa3xa6

+ 0.04343xa4xa5 − 0.22305xa4xa6 − 0.34357xa5xa6

Fig. 14 Actual vs predicted for the concrete compressive strength ANN model (initial model)
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Some of the major relationship explanations inferred between input and output vari-
ables using Taylor polynomial in region A are:

• Residual resistance is directly proportional to longitudinal position of the center of 
buoyancy, length-displacement ratio, and Froude number and inversely proportional 
to prismatic coefficient, beam-draught ratio, and length-beam ratio.

• Froude number has largest influence of residual resistance.
• Residual resistance is directly proportional to length-displacement ratio values but is 

inversely proportional to the square value of length-displacement ratio value.
• Residual resistance is inversely proportional to beam-draught ratio values but is 

directly proportional to the square value of beam-draught ratio value
• The interaction term of the prismatic coefficient and Froude number is third larg-

est contributor to residual resistance and is a positive iteration term i.e. decrease/
increase of both variables will increase residual resistance but decrease of one vari-
able and increase of other variable with decrease residual resistance

From the developed relationships, the physics consistency can be assessed with the 
known physics knowledge. The first two observations seem to physics consistent from 
available open literature [35] whereas the third to fifth observations physics consistency 
can be assessed by domain expert. Similarly, inference algorithm can be applied to other 
regions and additional points can be generated for region where physics inconsistency 
is found. The process can be iterated till all the regions in ANN regression model satisfy 
the physics consistency.

Physics based differential loss function

The second engineering dataset which will be used to illustrate the physics based loss 
function is the concrete compressive strength dataset [34].The dataset consists of con-
crete compressive strength for different values mixture constituents along with the age 

Fig. 15 Actual vs predicted for the concrete compressive strength ANN model (Model with physics loss 
function for superplasticizer)
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of the concrete. The seven constituents considered in the dataset are cement, blast fur-
nace slag, fly ash, water, superplasticizer, coarse and fine aggregates. An ANN model 
with 3 hidden layer each having 20 neurons was developed for this data with 70–15–15 
train, test, validation data split. The ANN model prediction of residuary resistance as 
compared to actual resistance is shown in Fig. 14.

Since the objective of this test case is only to illustrate the physic based loss function, 
only a simple first degree Taylor polynomial with development point at the mean of 
the data will be developed. The input value of development point is cement  (x1):281.17, 
blast furnace slag  (x2):73.89, fly ash  (x3):54.19, water  (x4):181.57, superplasticizer  (x5):6.2, 
coarse aggregate  (x6):972.92, fine aggregate(x7):773.58 and age  (x8):45.66. The first degree 
Taylor polynomial for the above development points is given below:

where 
xc1 =

x1−281.17
104.45562 , xc2 =

x2−73.89
86.23744 , xc3 =

x3−54.19
63.96593 , xc4 =

x4−181.57
21.34384 , xc5 =

x5−6.2
5.97094 , xc6 =

x6−972.92
77.71620 , xc7 =

x7−773.58
80.13705 , xc8 =

x8−45.66
63.13923

.

From the literature [36, 37], it can be seen that the compressive strength (y) in is propor-
tional to the amount of superplasticizer  (x5) which means the coefficient of xc5 in Taylor 
polynomial should be positive. But that is not the case which means this physics relation-
ship is violated by the ANN regression model near the mean. One way to make the ANN 
model consistent with physics is to add more data points near mean of data and re-train 
the model. This is the preferred method. However, in cases where addition of more data is 
not possible, physics based loss can be added to total loss. This physics loss can be taken as 
an average of differential of output w.r.t. violated quantity over all the inputs points. Each 
constant value in the Taylor polynomial generated by inferencing algorithm represents a 
differential quantity and the differential quantity of the violated term can be added in phys-
ics loss function. If the physics relationship is directly proportional relation then negative 
differential should be used and positive differential should be used inversely proportional 
relationship.

where Ω is multiplier of physics loss (0.1 in present case)

where n is number of data points.
The model is re-trained using the new loss function and plot for actual vs predicted is 

shown in Fig. 15. Again the inference algorithm is used with mean as the development point 
and developed the relationship shows that the ANN regression model is consistent with 
physics with regard to superplasticizer relationship. The relationship between compressive 

(y− 35.81796)

16.69763
= 1.02291+ 0.13811xc1 + 0.29268xc2

+ 0.12332xc3 − 1.03798xc4 − 0.60545xc5

− 0.49203xc6 + 1.17147xc7 − 0.68021xc8

Loss = MSE loss+ Regularization loss+ � ∗ physics loss,

Physicsloss(superplasticizer) = −
1

n

n∑

i=1

dy

dx5
(x5 = x5i),
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strength and fly ash has changed in new ANN regression model and this should also be 
check by user for physics consistency based on available literature or expert onion.

Conclusions
The present manuscript presents a method to develop physics consistent ANN 
regression models in engineering and science applications. The developed method 
assesses the physics consistency of ANN model in different input sub-space regions 
and regions where physics inconsistency is found, additional points in that specific 
region are added and ANN model is re-trained. In cases where addition of points is 
not possible or addition of points isn’t sufficient, a physics based loss can be used in 
the training of the ANN model. The assessment of physics consistency of the ANN 
model is done using an inferencing algorithm which interprets input output relation-
ship of ANN regression model. The inferencing algorithm is based on Taylor polyno-
mial. Taylor polynomial is a polynomial computed using the ANN function value and 
ANN gradients at an input point called development points. However, Taylor polyno-
mial is only accurate if the distance between estimate point and development point is 
less than the radius of convergence. Hence in this paper region-wise Taylor polynomi-
als are used which approximates the ANN function.

The paper also studies basic properties of gradients of ANN function and effect of 
degree of Taylor polynomial on the approximation capability of the Taylor polyno-
mial. The algorithm is split into two sections. The first section of the algorithm deals 
with computing the acceptable region of around a given development point. This 
algorithm estimates the initial region for investigation based on limiting traversal 
length in each input direction within threshold error. The initial region is compressed 
or expanded based on error in that region similar to a bisection algorithm until con-
vergence criteria is met. The second section of the algorithm deals with strategy for 
selection of development points. Initially several development points are randomly 
sampled and acceptable region of approximation for all these sample point is com-
puted using first section of algorithm. The expected acceptable region of approxima-
tion is estimated using the sampled development points. Then the input space is split 
into several domains based on the expected acceptable region of approximation. If 
error in split domain is less than threshold error than the computed Taylor polyno-
mial is used to approximate that region. If the error in any of the regions is greater 
than threshold error, then the specific regions are split into several regions based on 
the same algorithm. The algorithms also find singular zones in ANN predictions space 
as the region which have very small acceptable region of approximation or the regions 
which cannot be approximated by a Taylor polynomial.

Furthermore, the algorithm was applied several datasets to demonstrate the process 
of developing the physics consistent regression model. The first case study was used 
to compare current methodology with LIME algorithm while second case study was 

(y− 35.81796)

16.69763
= 1.01053+ 1.50332xc1 + 0.95170xc2

− 1.41150xc3 − 0.13374xc4 + 0.54586xc5

− 0.16829xc6 + 3.092357xc7 − 0.63694xc8.
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used to demonstrate singularity detection. The third case study is used to illustrate 
the inferencing algorithm to check physics consistency and fourth case study is used 
to illustrate the physics based loss function. The presented methodology will help 
engineer and researchers develop physics consistent ANN regression models.
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