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computational paradigms named Physics-Informed Neural Networks (PINNs). PINN has
revolutionized the classical adoption of ML in scientific computing, representing a
novel class of promising algorithms where the learning process is constrained to satisfy
known physical laws described by differential equations. In this paper, we propose a
PINN-based computational study to deal with a non-linear partial differential equations
system. In particular, using this approach, we solve the Gray-Scott model, a
reaction—diffusion system that involves an irreversible chemical reaction between two
reactants. In the unstable region of the model, we consider some a priori information
related to dynamical behaviors, i. e. a supervised approach that relies on a finite
difference method (FDM). Finally, simulation results show that PINNs can successfully
provide an approximated Grey-Scott system solution, reproducing the characteristic
Turing patterns for different parameter configurations.

Keywords: Physics-Informed Neural Networks, Scientific Machine Learning, Gray-Scott
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Introduction

Over the last 10 years huge research efforts have been devoted to the study and application
of reaction—diffusion models in real-world problems. The physical processes of reaction
and diffusion are usually modelled by differential problems of the following type:

—div(uVu) +ou=f in$2
u=~0 on ds2

1)

where 2 isasetin R”, 4 € L®(2) and o, f € L?(£2). This kind of models are widespread
in many fields of physics, as electromagnetism [11], heat transfer [3] and biological sci-
ences. Alan Turing, in a well-known manuscript [35] published in the 1952, assessed that
reaction—diffusion models could be used to shape the chemical basis of morphogenesis.
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This paper will deal with the Gray-Scott reaction—diffusion model. Such a system involves
an irreversible chemical reaction between two generic substances U and V, whose con-
centration at a given point in space and time is modeled by the functions u and v. They
react to each other and diffuse through the medium; therefore, the concentration of U
and V at any given location changes with time and can differ from that at other locations.
The Gray-Scott problem deals with two main chemical reactions:

U +2V — 3V cubic autocatalysis @
V — P uncatalysed

where P is an inert product. The behavior of the system is described by the following
coupled partial differential equations:

d
o =—uw?+F(1—u)+ Au

av 9
e =uv’ — (F+ K)v + Av.

where F and K are two parameters called feed rate and kill rate, respectively, while D,
and D, are diffusion’s coefficients (for additional details see Section 3). A peculiarity of
the Gray-Scott system is the high instability of the analytical problem due to diffusion
terms: Turing [35] discovered that a stable stationary state tends to become unstable
when a diffusive phenomenon occurs, which can lead to the reproduction of different
configurations called Turing patterns.

In the literature, several numerical methods have been proposed to simulate Gray-Scott
systems and generate the Turing patterns. In fact, this problem is generally solved with
some state-of-the-art finite difference and Galerkin methods. Conversely, our work aims
to study and apply a novel physics-informed neural networks (PINNs) methodology.
In recent years, the field of machine learning has been greatly developed, from model
improvement to algorithm optimization, and cross-application in other fields [17,18,33].
The PINN used in this paper is an emerging machine learning method. It adds constraints
of physical conditions on the basis of traditional neural networks, making the predicted
results more in line with natural laws of the addressed problem. Raissi et al. [29-31] intro-
duced the concept of the physics-informed neural network to solve forward and inverse
problems considering different types of PDEs, whose parameters involved in the govern-
ing equation are obtained from the training data. In particular PINNs approximate the
solution of PDEs by defining a surrogate model for the differential problem by using arti-
ficial neural networks. Such a model is obtained by a learning procedure that minimizes a
cost function, called loss function, that depends on the physics constraint, which acts as a
penalizing term reducing the space of admissible solutions.

The primary goal of this research study is focused on the definition of a computational
approach to solve a Gray-Scott system (3) by means of the physics-informed neural net-
works. The main contributions of this paper can be summarized as follows:

(i) We have designed a physics-informed neural network strategy for 1D and 2D
Gray-Scott systems;
(ii) We have designed a suitable loss function taking into account some prior infor-
mation related to dynamical behaviours;
(iii) We have compared, in the one-dimensional case, the solutions predicted by the
physics-informed neural network with the analytical ones;
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(iv) We have compared, in the two-dimensional case, the solutions predicted by
physics-informed neural network with the state-of-the-art finite difference and
Galerkin algorithms.

The rest of the paper is organized as follows: Section 2 presents a brief literature overview,
Section 3 describes the parameters and the dynamics of the model, Section 4 shows the
methodology used to address the problem with PINNS, Section 5 presents and discusses
the obtained results. Finally, Section 6 concludes the paper.

Related works

As discussed in the previous section, Turing patterns can arise from the Gray-Scott model
for particular configurations of the parameters of the problem. These kind of patterns
are ubiquitous in nature, such as in fish patterns [2], leopard spots and zebra stripes
[21]. Turing patterns can even describe the growth and distribution of vegetation in
wasteland under the action of water and other influencing factors. Introduced in 1984
concerning the autocatalytic reaction in isothermal, continuous stirred tank reactors [8],
Gray-Scott systems have known a growing interest on the part of scientific community:
many experiments and numerical simulations have been performed, e.g. to explore the
patterns, stability, and dynamics [1,9,22,24]. Numerically, Rodrigo et al. [32] obtained the
exact solutions of the reaction—diffusion equations by introducing ansatz to transform the
original 1D Gray-Scott system into a new system. Mazin et al. [20] replicated and extended
previous works and explored the pattern formation from a bifurcation analysis perspective.
Korkmaz et al. [16] combined the implicit Rosenbrock method with the exponential B-
spline configuration method to solve the numerical solution of the 1D autocatalytic system.
Manaa et al. [19] numerically solved the 1D model using successive approximation and
finite difference methods. A similar problem was also solved by Owolabi et al. [25]. Yadav
et al. [36] proved the existence and uniqueness of the solution of the reaction-diffusion
model by using Banach’s fixed point theorem and obtained the approximate solution
of the 1D Gray-Scott problem by using a Galerkin finite element method. Pearson [27]
performed a numerical simulation of a 2D Gray-Scott system using forward Euler integrals
in the 2.5 x 2.5 domain, and found 12 different spatio-temporal patterns by varying the
parameters. Chen et al. [4] investigated the stability and dynamics of localized speckle
patterns in a 2D model. Similarly, Kolokolnikov et al. [15] discuss the problem of zigzag
and fracture instability of stripes and rings in 2D models. Raei et al. [28] used the implicit
differential stepping method to semi-discretize the Gray-Scott model in the time direction,
and used the RBF-FD algorithm combined with the closest point method to solve the 3D
problem. Numerical simulations of a multimodal coupled model of the Gray-Scott system
were performed by Owolabi et al. [25].

In recent years, a new numerical computing method called Physics-informed neural net-
works (PINNS) is gaining popularity among researchers in the fields of science and engi-
neering [13]. The basic idea of the PINNs method [6] is to exploit the laws of physics in
the form of differential equations to train neural networks. Unlike the data-driven neural
network approach, the PINNs approach saves data costs while maximizing compliance
with physical constraints of the problem. Many achievements in research in this field
have been reached: Raissi et al. [31] used physical-informed neural networks to solve the
forward and inverse problems of some classical nonlinear partial differential equations
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under continuous and discrete-time conditions. Nascimento et al. [23] solved the fatigue
crack propagation problem by integrating ordinary differential equations with recurrent
neural networks. Pan et al. [26] learned the continuous-time Koopman operator through
a machine learning method based on physical information and applied it to nonlinear
dynamical systems in the field of fluid dynamics. Jagtap et al. [12] proposed a physical-
informed neural network that obeys the hyperbolic conservation law in discrete domains,
and applied it to the solution of forward and inverse problems. Tartakovsky et al. [34]
proposed a PINNs method for estimating parameters and unknown physics (constitutive
relations) in a PDE model and verified it in both linear and nonlinear diffusion equations.

Remarks on model stability

With reference to the differential problem (3), the Gray-Scott system describes the inter-
action of two chemical species U and V through the coupled dynamics of their concen-
trations # and v in the time-space domain. On the left-hand side of each equation the
time derivative of one of these concentrations describes the rate at which it changes. The
right-hand sides of both equations presents three separate terms: the reaction (2) takes
place at a rate proportional to the concentration of U times the square of the concentra-
tion of V, so the first term uv? represents the reaction rate. Since the reaction uses up 1/
and generates V/, all of the chemical U will eventually get used up unless there is a way
to replenish it. Then, the parameter F, called feed rate, manages the importance of the
replenishment term F(1 — u), while D, is the diffusion term of U. The second equation,
similarly to the first one, contains the term (F 4 K)v which represents the diminishment
factor and serves to limit the increase concentration V. The parameter K is called kill
rate, it manages the rate at which V' is converted to an inert product P and is multiplied
by v since the substance V' depends on its concentration.

Stability

Physical systems governed by partial differential equations generate interest in mathe-
matics as regards, for example, the existence of equilibrium solutions and its dependence
on the parameters of the problem. Since equilibrium may exist only for certain values of
such parameters, a physical problem, to be well-posed (in addition to the existence and
uniqueness of the solution and its continuous dependence on the data), needs a check
about the stability of the solution. In this section we’ll deal with the stability of the uni-
form steady state of the Gray-Scott model. In this perspective, the study about stability of
a system allows to know, after a certain threshold, the evolution over time of the problem’s
solution. We use the following Theorem to analyze the stability.

Theorem 1 Let (u,v) be a stationary point of the following system

Upt1 =f(1/lm Vi) (4)

V4l = g(um Vi)

and ] be the Jacobian of (u, v), then

(i) If all the eigenvalues A; of ], satisfy |\i| < 1 fori = 1,2, then (u,v) is stable.
(ii) If all the eigenvalues \; of ], satisfy |A;| > 1 fori = 1,2, then (u, v) is unstable.
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In the stationary state, U and V' do not depend on time. Moreover, for analysis purposes,
also the diffusion terms have been set to zero:

u  ov
— =—=Au=Av=0.
ot ot
Hence, the system (3) becomes
—uw+F1l—u)=0 )
uv> — (F+K)v = 0.

Solving the system, the point (x,v) = (1,0) is a solution to the equations. As long as
4(F + K)? < F, we obtain two further solutions:

1 A(F + K)? F A(F + K)2
(W):(E[livl_ F ]’2(F+1<)[1$ I_TD’

while in the case 4(F 4 K)? = F these points are equal to

(u,v) = (%, 2(F +K)>.

To determine the stability the Jacobian matrix of the system is computed as:

—vI_F —2uv
]m”:< v 2w—w+m>

resulting in

_F 0
N%W=<0 —G+K)' ©)

if evaluated in the point (% v) = (1, 0). Hence, for the Theorem 1, we observe that the
point (&, v) = (1,0) is stable equilibrium since the Jacobian matrix presents two nega-
tive eigenvalues. As regards the other two stationary points, it can be observed that one
of them presents always a stable manifold in one direction and an unstable one in the
other, resulting in a saddle node. The other equilibrium exhibits a bifurcation line in the
parameter space, in particular when 4(F 4 K)? = F: these changes in the stability of fixed
points are what create the patterns. We can observe in Fig. 1 how small fluctuations of
parameters (F, K) lead to different patterns.

A physics-informed strategy

In the last few years, Neural Networks have been successfully adopted to solve nonlinear
partial differential equations thanks to the introduction of a novel methodology, namely
Physics-informed Neural Networks (PINNs). These are Artificial Intelligence approaches
that takes into account physical constraints and prior information to deal with differential

problems of the type:
Fux);n) =f x in £2, @
B(u(x)) =g X in d$2

defined on a domain £2 C R? with boundary 9£2. In Eq.7, the function u represents
the unknown solution, 1 are such parameters related to the physics, f and g are known
functions; F represent a non linear differential operator and B denotes the initial and/or
boundary conditions.
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Fig. 1 The dotted line represent the bifurcation line. Several choices of the couple (F, K) reproduce different
patterns

PINNsaim in training a Neural Network to become a surrogate model of the PDE equation,
or system, such that, given a space-time vector x := [xy, . . ., y; ] and the dynamic related
parameter 7, the approximate solution #1g(x) is close to the actual u(x): in this sense, this
methodology can be used to solve differential problems in a forward setting. Conversely, if
data are available (e.g. provided by sensors or numerical simulations), the same framework
can be applied in a inverse approach, providing a parameter estimation driven by the
coherence with physics and data constraints.

The architecture of the network chosen as well impacts on the surrogate model created
through a PINN approach: exploiting the characteristics of different types of neurons
analytical or physical properties of the differential problem can be embedded directly
in the neural structure [31]. Following the most common approach in literature, in this
work we design a feed-forward neural network (FE-DNN), also known as a multi-layer
perceptron (MLP), to approach to the problem (3) in a PINN framework. FF-DNN is
an architecture in which neurons in adjacent layers are connected, and neurons inside a
single layer are not linked. More specifically, a neuron can be seen as a computational unit
that combine a function (usually non-linear), named activation function, with a weighted
sum of the neuron’s inputs, plus a bias factor.

Defined the layer function as:

hi(xi-1; Wi, bi) = 0i(Wixi—1 + b;)
where o; is a scalar (non-linear) activation function, W; and b; are the parameters defining
the layer i, i.e. the weights of the links between the layer i — 1 and the layer i and the

corresponding biases, the output iy (x) of a FF-DNN can be written as a composition of
functions

g(x) =Ipoco0ol;_1...00 o I7(x), (8)
where, for any 1 < k < L, it is defined
Te(xg—1) = Wixg—1 + by ©9)

considering a NN composed of an input layer and L hidden layers, the last of whom is the
output one, and the same activation function o for each unit.
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In general, the introduction of a physical constraint into the training process can be done
in several manners: as mentioned above, the NN architecture can be designed to implicitly
satisfy some properties of the faced problem; data related to the underlying physics can be
collected or carefully crafted by numerical simulations and used in a supervised shape to
allow the model to learn functions, vector fields, and mathematical operators; a suitable
cost function can be chosen, usually built in the form of residual loss with respect to the
physical laws underlying the problem and so expressed in the form of integral, differential
equations or even fractional ones [13], that guarantees the convergence towards solutions
of the model. In our case, as better discussed in Sec., the last two methodologies have
been applied according to the problem addressed.

However, in the general framework of PINNS, solving a differential problem of the type
(7) means learning how to approximate the dynamics finding 6*, the optimal NN param-
eters vector, by minimizing a loss function dependent on the differential equation Lz,
the initial/boundary conditions £z, and, if present, the known data £, each of them
adequately weighted:

0* = argmin (wr L x(9) + 0w LB(O) + ®gutalL dua(0)) -
0

Itis worth underlining that, as regards the experiments performed in the following sections
of this paper, especially in the case of 2D Gray-Scott systems, we set up a strategy which
consists in adding a temporal collection of known data, i.e. solution samples computed
through numerical methods, which is one of the core ideas of our work. In the dynamical
evolution described by the Gray-Scott system, the complete morphology of associated
Turing patterns is observed over a long period of time. However, too long “simulation
times“ may cause the system to evolve towards a local optimum: merely providing residual
loss with initial/boundary conditions is not sufficient to guarantee the convergence to the
actual solution of the problem and the rise of expected Turing patterns. If the predicted
solutions of the system are not corrected in time using these known data, the final GS
system may exhibit a state in which the reactants dissipate or uniformly cover the entire
observation domain due to local optimal evolution. To solve this problem, we set up a
time set containing # time points £1, £,..., t;. At each time point, we numerically obtain the
correct value for the unknown solution, and then apply those known data to the surrogate
model in the form of a loss function. It is worth noticing that known data from numerical
methods inherently contain the physical information of the Gray-Scott model. So, in this
case, L 4,1, can be written as:

n
Liata = Z Liata(t:)
i=1
where t; is the time instance in which the known data are considered and the depen-
dence on 6 will be omitted now on for brevity. A schematic diagram the aforementioned
procedure is shown in Fig. 2.

Experimental results

In this section, the performances and accuracy of the PINN approach are presented and
discussed. In particular, one-dimensional and two-dimensional Gray-Scott systems are
addressed. As regards the one-dimensional formulation (Sect. ), the presented results, in
both the cases considered, have been achieved by using PINNs with only boundary and



Giampaolo et al. Adv. Model. and Simul. in Eng. 5ci.(2022)9:5 Page 8 of 17

known data: u(t;, x, y), v(#;, x, y)
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Fig.3 General workflow of the proposed approach. Collocation points and samples from numerical
simulations are used as inputs of the pipeline. The functions u and v are returned as output of the network.
Automatic differentiation is used in order to compute the loss terms related to the dynamics. The training
process calibrate the network’s parameters in such a way a surrogate model is obtained. It is worth noticing
that Data related components are shown for the sake of completeness since they are only applied in the two
dimensional problem addressed in the following

dynamic loss functions, i.e. without the loss component related to known data. In two-
dimensional experiments (Sect.), we designed a suitable strategy by adding known data,
generated through a numerical solver, to the loss functions of the PINN as additional

constraint (Fig. 3).

1D Gray-Scott system

In the one-dimensional case, for testing the reliability of the PINNs, have been compared
the predicted solution for the Gray-Scott system with the exact solution in the following
(Case 1), and with numerical results with those obtained by the MATLAB solver (Case
2). Both the experiments assess the good accuracy of our approach when dealing with 1D
Gray-Scott systems. Due to the slow convergence dictated by the PINNS, to have a good
performance by minimizing the loss function, the duration of the training process has been
set as 50, 000 epochs with 1000 epochs for the patience. In this way, if the best solution has
already been achieved, the iteration stops; conversely, the algorithm continues its training
until it reaches a better solution. The execution times in training is about 5 minutes on a
GPU NVIDIA GeForce RTX 3080 with CPU intel core i9-9900k and 128 GB of RAM. In
these cases, the loss functions is composed by two terms:

L=wlp+wrlr (10)
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where L £ represents the loss component related to the dynamics and £z represents the
loss component related to the initial/boundary conditions. The two terms can be written

as follows:
1 Mo 1
5= A—[O;umo,x»—ho||2+@§||a(m)i—h3n% 11)
1 N
_ N2 YT
Lr= N ;(Ilﬁ((t, X))+ 125 %)) ) (12)

where A is the known initial condition, /p is the known boundary condition, Ny is the
cardinality of the set {(£, x);|¢ = 0} and Np is the cardinality of the set {(t, ¥);}, in which
X represents the space points belonging to the boundary of the domain. Moreover the
functions f; and f, are the residual with respect to the differential equations and they are
defined as follows:

ou 5 3%u

av 9 2

= — — F+Kyv— —.
fo= gy W+ 4Ky = o

The accuracy of the trained method is assessed through the root mean square error
(RMSE) of the exact value u(z, x); and the predicted value i(z, x); inferred by the network.

RSE — | (6 0) — (6 1))
N
Case 1: The first case is represented by the one-dimensional Gray-Scott model discussed
in [32]. Under the assumption 4(F + K)? < F, we set z = x — 8t and (3) can be rewritten
in terms of z, obtaining:

(13)

du 9 d’u

0=B8—+uv—F(1—u) — —
dz dz? (14)
dv 9 d?v

where

ﬁ—ﬁl—SI) n=1-—4F

For this case, the boundary conditions are given as:

2 —4\/5, 24 ﬁ)

(u,v)(—=10) = (1,0) (u,v)(10) = ( )

In this settings, some exact solutions to this problem can be provided as in the following:

u(z) = 3 4\/_ \/_E tanh <f >
v(z) = M + £ tanh (£z>,
4 4 4

where £ = 1+ /5 — 2F. The neural network architecture used for the PINN approach,
in this case, consists of four hidden layers with 10 neurons in the first two layers and 20
neurons in the other ones. A sigmoid activation function for all the neurons and the Adam
optimizer with a learning rate of 1072 have been applied. As we can observe in Fig. 4, the
predicted solutions, obtained on 600 domain points, overlaps the analytical one assessing
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z
Fig.4 Profiles of Eq.3where D, =D, =1,F = { andK =0

the PINNS reliability for this particular case of the one-dimensional Gray-Scott model.
The RMSE between the predicted values of PINNs and exact solutions are as follows:
RMES, = 1.7982 x 1073, RMES, = 1.7286 x 10~3, where N = 21 calculation points are
selected.

Case 2: As a second case study, the parameters D, = D, = 0.01, F = 0.09, K = —0.004 are
considered for the system (3). This case is also discussed in [19]. Here, the neural network
architecture consists of four hidden layers with 20 neurons in each layer. The hyperbolic
tangent activation function and Adam optimizer with a learning rate of 1072 has been
applied. The number of the points selected to train the model is N = Ny + N + N,,
where Ny = 100 are for the initial conditions, N;, = 200 are for boundary conditions and
N, = 1024 are collocation points. The numerical solutions obtained with the proposed
approach are shown in Fig. 5a, b. In Fig. 5¢, d the numerical solutions for the functions
and v obtained through a Galerkin method are presented as benchmark. The initial and
boundary conditions are:

X X
u(x, 0) = u; + 0.01 sin<7> v(x, 0) = vs — 0.12 sin<7>
u(0,t) = u(L, t) = ug v(0, ) =v(L, t) = v

respectively, where u; = 1, v, = 0, L = 2.

In this case, the predictions of the PINN are compared with those obtained by the Galerkin
method. Table 1 reports the RMSE obtained by matching the number of collocation points
in the PINN (Np) with the number of grid points in the Galerkin method (Ng). We set
the same number of points for the two methodologies: Np = Ng = 176, 651, 15251
respectively. As it can be observed, the RMSE are low in all the three settings, assessing that
PINN approach provide comparable performance to Galerkin method. Table 2 reports the
prediction errors for different number of collocation points on which the PINNSs is trained
compared to the high-precision Galerkin method solution (i.e. fixing Ng = 15251). As
it can be observed, the accuracy of PINNs improves as the number of collocation points

grows.
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(b) PINNS for the values of v

(c) Galerkin method for the values of v (d) Galerkin method for the values of v

Fig.5 Profiles of Eq (3) where D, = D, = 0.01, F = 0.09 and K = — 0.004e. The results in figure (a) and (b)
were implemented with PINNs. The results in figure (c) and (d) were implemented with Galerkin method

Table 1 The RMES for Case 2 by making Np = Ng

Np = Ng RMSE, RMSE,

176 84760 x 10~* 43799 x 1073
651 6.1477 x 1074 41715 x 1073
15251 58099 x 1074 38161 x 1073

Table 2 The RMSE of Case 2 by increasing Np and fixing

Ng = 15251

Np RMSE,, RMSE,

24 46145 x 1073 5.7044 x 102
63 1.8322 x 1073 1.0239 x 1072
117 13297 x 1073 49414 x 1073
176 96979 x 1074 42570 x 1073
651 7.9761 x 1074 41751 x 1073
15251 58099 x 1074 38161 x 1073

2D Gray-Scott system

In this subsection, the two-dimensional Gray-Scott problem is addressed. The neural
network architecture designed in the case of this study consists of four hidden layers
with 20 neurons in each layer, a hyperbolic tangent activation function for the input, and
a sigmoid activation function for the output. The set of collocation points is generated
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Fig.6 Example of Flower patterns. The parameters used in the (3) are F = 0.055 and K = 0.062. The times
shown are: t = 750, 2250, 2750, 4750

uniformly sampling the time-space domain in N, = 10, 000 points; the initial condition
is provided to the model on a grid of Ny = 101 x 101 points; boundary conditions are
imposed on Np = 4 x 100 points randomly sampled on the space-time surfaces related to
the boundary of the domain, 100 points for side; finally, in Ny, = 10 x 101 x 101 points,
namely on a grid 101 x 101 in 10 time steps, the numerical solution is provided to the
PINN model for the supervised component of the loss. To minimize the loss function the
network has been run for 50, 000 epochs using Adam optimizer [14] and a learning rate
of 1073. The execution times in training is about 15 minutes on a GPU NVIDIA GeForce
RTX 3080 with CPU intelcore i9-9900k and 128 GB of RAM. As regards the loss function,
in the case under consideration it consists of three terms: the first one is related to the
initial conditions and to the boundary conditions, the second one relates to the dynamics
of the system, and the third computes the error with respect to known data points:

L=wslp+orlr+ odualina

In particular, each of the aforementioned components can be written as:
1 1 &
N 2 N 2
Lp= Ne > Nt x y)ile=o — hoill* + A > st % Yilxconyeae — hpill®
04 b“
i=1 i=1

Ny
Lr= Ai[f Z(Ilﬁ((t, N2+ 1A% y)i)||2>,
i=1

Niata

Lasta = —— Y _ Nt %9):) — haataill>
Ndata i—1
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Fig.7 Example of Mitosis patterns. The parameters used in the (3) are F = 0.028 and K = 0.062. The times
shown are: t = 1250, 2750, 3750, 4750

where, in each equation, the collocation point (¢ %, y); refers to the i — th point of the
set whose cardinality is Ny, N, N4, respectively. While, the functions hf), h}; and hfia ‘
are the initial, boundary and numerical constraints on each point ( %, y); considered. To
provide the known data needed for the computation of L, a finite difference method
(FDM) second order accurate in space and first order accurate in time is used. The func-

tions f] and f; are defined as follows:

0

A= —M—i—uvz—F(l—u)—DuAu
av

fo=— —uv®+ (F+K)v — D, Av.

at

In the following, experiments on different configurations of the Gray-Scott model’s param-
eters are shown, inspired to the work [27]. In particular, differences in parameters F, K and
diffusion coefficients D, and D,, lead to different Turing patterns. For the different cases,
we set the same space-time domain and initial/boundary conditions, i.e. the entire system
was placed in the trivial state (4 = 1,v = 0) at¢ = 0, with a small squared area located sym-
metrically about the center of the fields perturbed to (1 = %, V= %). Periodic boundary
conditions are imposed on the domain edges. Assuming constant D, = 2D, = 2x 10~ in
all the following cases, F and K have been set in such a way that patterns well known in lit-
erature are produced in the temporal evolution of the system. The data for the supervised
component of the loss function, i.e. £,;,, are provided as discussed before, and particu-
larly in the time instances ¢ € {500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}.
The results obtained are the following (Figs. 6, 7, 8, 9):
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Fig. 8 Example of Soliton patterns. The parameters used in the (3) are F = 0.030 and K = 0.060. The times
shown are: t = 750, 1750, 2750, 4750

Table 3 The MAE and RMSE for the four experiments. Errors, in terms of RMSE and MAE, of the PINN
provided solution with respect to numerical solution of bidimensional Gray-Scott system.
Experiments are conducted for different configurations of the parameter couple (F,K) which give
four types of Turing patterns during the temporal evolution

PATTERNS MAE, MAE, RMSE, RMSE,
FLOWER 0.22 0.10 0.30 0.16
MITOSIS 0.19 0.07 0.26 0.1
SOLITON 0.22 0.09 0.29 0.13
ZEBRAFISH 0.23 0.10 0.29 0.14

In Table 3 the errors, in terms of RMSE with respect to the functions # and v, are reported
in the cases different patterns (for several values of the parameters F and K) are exhibited
in the temporal evolution of the Gray-Scott system. It is worth recalling that, since in
this case no analytical solution is providable, the approximated solutions given by the
PINN approach have been compared with numerical simulations of the system. As can be
noticed, magnitude of errors remain constant despite very different spatio-temporal con-
figurations can create. This suggest that approximation errors due to the methodology
remains stable. More in detail, the learning process or the expressiveness of the net-
work which models the differential problem, guarantee the applicability of the proposed
approach on a wide range of problems modelled by Gray-Scott system.
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Fig.9 Example of Zebrafish patterns. The parameters used in the (3) are F = 0.035 and K = 0.060. The times
shown are: t = 750, 2250, 2750, 4750

Conclusions and discussions

In this paper, a physics-informed neural networks methodology for solving Gray-Scott
systems has been proposed. Such problem has been addressed for 1D and 2D settings
respectively. In the first case, we compare the approximated solutions obtained through
the PINN approach with the exact one, if it exists, and also with solutions provided
by numerical solvers. In 2D numerical experiments, by considering four (F, K) problem
configurations. The proposed approach have proven to be able to provide approximated
solutions that mimic the typical patterns exhibited by Gray-Scott models in the instability
regions of the parameter space. The comparison results well assess the performance of the
PINN solver for Gray-Scott systems. To the best of our knowledge, this work represents
the first attempt about the design of a Physics-Informed Neural Network for the above
discussed topic. The main issue to be addressed during the design of a Physics-Informed
Neural Network is to find a suitable learning approach that can produce an approximation
of the system’s solution. In this context, if the loss function is not properly designed, the
neural network fitting model could disregard the mutual dependence of # and v in the
system equations. In particular, as regards the 2D experiments, the PINN approach tends
to converge towards local optima of the loss function, namely the constant solution (1, v) =
(1, 0) rather then converging to a a sharp solution of the problem then related to the Turing
patterns. To overcome this issue, in this paper we have proposed an approach that takes
into account a-priori knowledge on the system in order to force the PINN to convergence
to the actual solution of the system according to the values of the parameters F and K.
In particular, we have re-designed the data loss to take into account some snapshots of
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the provided numerical solution; in this way, reliable results have been obtained also in
the case two spatial dimensions are considered. It is important to mention that there
are still some issues to be addressed as future research directions: for example, solving a
3D Gray-Scott system by using PINNs represents a challenging task that surely will be
addressed in future works. All these considerations pave the way to further studies on
the optimization of possible constraints in the residual PDEs to correct misbehaviors of
the network and also to save computational costs. In such a way a reliable methodology
based on Physics Informed Neural Networks can be provided as regards the general, and
interesting, framework of Gray-Scott systems.
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