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Abstract

Identification from field measurements allows several parameters to be identified from
a single test, provided that the measurements are sensitive enough to the parameters
to be identified. To do this, authors use empirically defined geometries (with holes,
notches...). The first attempts to optimize the specimen to maximize the sensitivity of
the measurement are linked to a design space that is either very small (parametric
optimization), which does not allow the exploration of very different designs, or,
conversely, very large (topology optimization), which sometimes leads to designs that
are not regular and cannot be manufactured. In this paper, an intermediate approach
based on a non-invasive CAD-inspired optimization strategy is proposed. It relies on the
definition of univariate spline Free-Form Deformation boxes to reduce the design
space and thus regularize the problem. Then, from the modeling point of view, a new
objective function is proposed that takes into account the experimental setup and
constraint functions are added to ensure that the gain is real and the shape physically
sound. Several examples show that with this method and at low cost, one can
significantly improve the identification of constitutive parameters without changing
the experimental setup.

Keywords: Identification, Digital image correlation, CAD, Free-form deformation,
Reduced-order modeling, Non-invasive

Introduction
Along with the design of manufactured materials (composites, architected materials, lat-
tices...) or the development of advanced manufacturing processes comes the need to
develop simulation tools capable of predicting the behaviour of complex parts. Although
purely model-free data-driven simulation tools have been proposed very recently [1],
most of the tools are essentially based on more or less sophisticated constitutive mod-
els [2] or their hybridization with artificial intelligence [3]. From an experimental point
of view, identifying the possibly large number of parameters of such complex models
requires designing several different experiments [4]. Calibrating a single material model
can require today carrying out up to dozens of experiments, which makes the overall
process very costly and time consuming.
The current trend is to develop procedures that minimize the number of tests ; maxi-

mize the benefits of the necessary tests by optimizing them (sample shape, loading path,
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reduced design of experiments...) ; getting more and richer data from it and better inte-
grate it with finite element simulations. This approach is referred to as smart testing [5].
For instance, it is possible to calibrate as many parameters as possible at once from a very
small number of tests thanks to the identification from full-field measurements [6]. Many
identification methods have been proposed [7]. Roux et al. [8] reformulated most of them
as theminimization of ametric used tomeasure the distance betweenmeasured and com-
puted displacement fields. In this respect, identification can be viewed as data assimilation
in mechanics of material. The proposed methodology in this paper will be illustrated with
the weighted Finite Element Model Updating (FEMU [9,10]), but, following [8], it could
also be applied with other identification procedures.
To do this, the testing and instrumentation must meet the following two conditions

[6]: first, rich instrumentation techniques must be used, such as field measurements, in
order to increase the amount of data (i.e. measured quantities); second, the measured
quantities must be sufficiently heterogeneous and, more precisely, sensitive to the sought
constitutive parameters. To achieve this, instead of standardized (uni-axial) tests, authors
considered complex specimens shapes (along with possibly complex loading conditions
[11]) to better sample the material response. For instance, authors drilled holes [12,13],
machined different notch shapes [14] or designed cruciform samples [15] with different
shapes and fillet radii, to name a few. But the choice of notched geometry, hole radius and
position is often made empirically and does not guarantee any form of optimality with
regard to the identification of the parameters.
Going further in the optimization of the shape of the specimen and improving the

identification of constitutive parameters requires: (a) defining one or more optimality
criteria (modeling stage) and (b) building a suitable shapeoptimization algorithm (solution
stage).
Regarding the modeling stage, numerous criteria for the optimality of a specimen have

been proposed in the literature. They can be classified into two main families. The first
family does not consider any specific constitutive model: it relies on a measure of the
heterogeneity of material states. The idea is usually to quantify the ability of a specimen
to well sample the behaviour in the principal stresses/strains plane [15–18] or to target a
specific triaxiality [19]. These methods are designed to ensure that the specimen correctly
samples the behaviour, which is useful for discriminating between different constitutive
models. Although the identification of constitutive parameters can be improved, it is
not guaranteed, as the objective function does not measure the accuracy with which
parameters are identified.
The second, andmore recent, approach consists in optimizing the shape of the specimen

with respect to one given constitutive model. The criterion, originally proposed by Bertin
et al. [20] is based on the minimization of the covariance matrix of the identified material
parameters. It relies on a fine analysis of the propagation of the measurement noise in
the identification process [8,21]. This approach is particularly attractive since it can allow
to reduce the identified parameters uncertainty by orders of magnitude. However, let us
underline that the modeling is usually based on the sole minimization of a cost function
(without constraints) and that the latter is only related to the spectrum of the covariance
matrix. As such, theremay be competitions between the specimen shape and other exper-
imental settings. For instance, from an experimental point of view, if the overall size of
the specimen changes, the field of view of the camera must be adapted so that it covers
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the entire specimen. This will modify the image resolution and therefore the uncertainty.
On the other hand, in the above cited works, the maximum strain can increase during
optimization. There is then a competition between modifying the shape of the specimen
and increasing the loading level, whereas the latter is not a design variable.
Regarding the solution stage, it has first to be said that most studies do not truly run

optimization algorithms but rather use the two above criteria families to compare existing
or manually updated designs. Only few authors did rely on automatic optimization algo-
rithms to explore larger design spaces. In this context, most of the proposed optimizations
(e.g., [19,20,22]) are carried out in very small design spaces, where only geometric param-
eters such as radii and hole positions are modified. This is generally known as parametric
optimization. The advantage with one or two design variables is that a real optimization
algorithm is not mandatory, since a graphical or manual optimization may be sufficient.
However, this is reduced to very limited variations of the geometry. At the opposite
extreme, very large design spaces were considered to explore completely generic designs
in [23] where the authors developed a SIMP-type topology optimization algorithm. The
method has the advantage of being able to evolve the topology and therefore to create
holes or notches if necessary. Yet, there are still many limitations. The design space is very
largewhich results in prohibitive computational costs andmay lead to unrealistic irregular
shapes. The optimized shape must be redesigned manually in a post-processing phase to
improve regularity and/or machinability without considering the effect on optimality nor
on the sensitivity fields.
In this paper, it is proposed to follow an intermediate path regarding the design space.

Given the highly ill-posed nature of the problem, the spirit is not to determine the ideal
specimen (if it exists) but to further improve an existing manually designed or parametri-
cally optimized specimen. Here, the use of a spline-based geometric shape optimization
as in [18] is proposed because it allows free-form geometry modifications with unchanged
topology. It is possible to keep a low number of design variables and a design sub-space
made of regular shapes thanks to spline functions. However, for the sake of having a
generic and simple method from an implementation point of view, let us underline that a
“classical” Finite Element (FE) mesh is considered for the computation (with a sufficient
refinement to obtain good accuracy). A non-invasive CAD-based optimization strategy
is therefore developed with the help of univariate spline Free-Form Deformation (FFD)
boxes that relate the movement of the FE mesh to spline design variables during the opti-
mization. Formally, the spline design space can be interpreted as a reduced-order space
from a FE design space that would be directly associated to the FE mesh, which enables to
regularize the optimization problem in a flexible way (see, e.g., [24,25] for similar ideas in
other contexts). Then, from a modeling point of view, the aim is to improve the sensitiv-
ity to several constitutive parameters, for the purposes of identifying several parameters
at once. It requires to make modifications to the usual formulation of the optimization
problem (objective functions and constraints), in particular to take into account the image
resolution and the loading magnitude.
This paper is organized as follows: Sect. “Constitutiveparameter identification fromDIC

quickly” reviews the process of parameter identification, namely the FEMU method and
its functional, and the covariancematrix that comes from coupling FEMU toDigital Image
Correlation (DIC) and that gives a representation of the uncertainty over the identified
constitutiveparameters. Sect. “A spline-based regular reduced-orderdesign space” focuses
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on the non-invasive spline optimization strategy, based on FFD [26] as reduced-order
modeling for the design variables, that is implemented tomake themethod suitable to any
possible geometry. Then, Sect. “Appropriatemodeling of the specimen shape optimization
problem” presents the developedmodeling for the specimen shape optimization problem.
In particular, our choices are explained regarding the cost function and constraints so
that the optimization results are physically meaningful and the obtained geometries are
machinable. These choices are illustrated and validated through a simple analytic example.
Finally, numerical experiments are conducted in Sect. “Numerical examples” to assess the
performance of the methodology on more complex structures with both isotropic and
orthotropic linear elastic constitutive relations, and concluding remarks are drawn in
Sect. “‘Conclusion’ ’.

Constitutive parameter identification fromDIC
In this work, let us recall that the FEMUmethod was considered for material constitutive
parameter identification and, without loss of generality, in the context of 2D-DIC.

FEMUmethod

The FEMU method consists in comparing a measured quantity to a simulated one, typi-
cally a measured displacement field on a specimen obtained with DIC to a displacement
field obtained from numerical computation with similar boundary conditions and the
chosen material constitutive law [27,28]. The aim is to find constitutive parameters val-
ues that minimize the discrepancy between the simulated field and the measured field.
The functional to minimize thus reads:

Fp(q) = ‖v(q) − u‖2H , (1)

where v(q) and u are vectors gathering the simulated and measured displacements
respectively.
Remark In this paper, the analysis focuses on the case of full-fieldmeasurement performed
by DIC [29,30]. Simulated displacement fields v generally come from FE software and
therefore are expressed at the nodes of a FE mesh. An easy way to compare a measured
displacement field u with a simulated one is to seek the measured displacement field in
the same FE space as used for the simulation. It is usually referred to as FE-DIC in the
community [13,21,31–33]. Note that there exists many weak [21,34,35] or strong [25,32]
regularization techniqueswhichmake it possible to performFE-DICon arbitrarily fine (let
us say analysis-suitable) FE meshes and which remove any limitation for element size (or
degree, or type) in the simulation. From now on, v and u will represent the displacement
values (DOF) at the nodes of a unique FE mesh (same for simulation and measurement).
Vector q is the set of sought constitutive parameters andH a symmetric positive definite

operator such that ‖a‖2H = aTH a. One can imagine that the quality of the results
depends on the quality of the measurement. A consequence is that there exists a “best”
norm to choose in order to quantify the discrepancy between these two fields, which
consists in takingH equal to the inverse of the covariancematrix of themeasured quantity
[Covu]−1 [8,36]. This norm gives to each DOF a weight that is inversely proportional to
its uncertainty.
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To find q that minimizes Fp(q), a Gauss-Newton algorithm was used. Starting from
an initial set q(0), each Gauss-Newton iteration k updates the values of the constitutive
parameters as follows:

∀k ∈ N, q(k+1) = q(k) + δq(k) . (2)

δq(k) is computed as the solution of a linear system:

H(k)
FEMU δq(k) = b(k)FEMU , with

⎧
⎨

⎩

H(k)
FEMU = ∇qv(k) H ∇qv(k)T

b(k)FEMU = ∇qv(k) H
(u − v(k)))

, (3)

where v(k) = v(q(k)) and∇q is the gradient with respect to the sought constitutive param-
eters, i.e. line i is ∂

∂qi , the sensitivity field to parameter qi. Note that the normalization of
the constitutive parameters is of utmost importance for such analysis.

Noise propagation in FE-DIC

DIC aims at measuring a displacement field u from the comparison of a reference state
image I with a deformed state image J . Errors can arise from any step of the DIC pro-
cedure (speckle pattern quality, light, air heat gradient, camera calibration, camera noise,
subpixel interpolation, displacement field numerical approximation...). In this paper, the
optimality will be based on noise uncertainty and will omit other possible biases.
The effect of image noise on displacement uncertainty (or on its covariance) can be

characterized explicitely in DIC. Indeed, following [20,31,33], I andJ are assumed to be
independently affected bywhite noise of variance γ 2 or equivalently that onlyJ is affected
by white noise of variance 2γ 2. In this context, it can be shown that the covariance of the
measured displacements is such that [20]:

[Covu] = 2γ 2H−1
DIC .

Operator HDIC is the approximation of the Hessian of the DIC functional which is a
cost-free output of the DIC problem and which has the following form [37]:

HDIC =
∫

I
NT∇I ∇ITN dx , (4)

where I is the Region Of Interest (ROI) in the images and N the matrix gathering the FE
shape functions.

Noise propagation in FEMU

From (3), the covariance of the identified constitutive parameters reads [20,21]:

[Covq] = H−1
FEMU = 2γ 2

(
∇qv HDIC ∇qvT

)−1
, (5)

where ∇qv is the sensitivity field with respect to a set of parameters that should be
close to the actual ones (see beginning of Sect. “Computation of the sensitivity fields
w.r.t. constitutive parameters” for further details). This covariance matrix [Covq] is of
size nq × nq with nq the number of sought constitutive parameters. It contains helpful
information in order to derive a representative criteria of a “good” constitutive parameter
identification [20].

A spline-based regular reduced-order design space
Before detailing the developedmodeling of the specimen shape optimization problem (i.e.,
cost function + constraints), let us introduce here the strategy implemented in terms of
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design space. Fromageneral point of view, it is necessary to (i) choose a suitable andflexible
design space to parametrize the shape modifications and (ii) build an efficient technique
to update the FE mesh when the geometry evolves. Let us remind that the method relies
on a unique FE mesh which is used for both the simulation and the measurement. It is
this mesh that describes the geometry of the sample and its updating.

Design space using spline FFD

As stated in the introduction, our objective in this work is to further improve the shape
of a manually designed or a parametrically optimized specimen. Thus, no topology opti-
mization will be performed. Such strategies proved to be useful in the field of structural
optimization [38–42] since they offer a very large design space. Conversely, they usually
imply prohibitive computational costs with numerous remeshing steps and may require
specific regularization procedures to obtain realistic shapes. In our case of an optimiza-
tion problem related to the minimization of the identification uncertainty, the last point
appears even more challenging (see [23]). Alternatively, only shape optimization will be
carried out in this work. In this context, the displacements of the mesh nodes could be
directly used as design variables. The literature, once again in the field of structural shape
optimization, shows that it corresponds to excessively large design spaces, whichmay lead
to irregular shapes that inherits theC0 properties of FE basis functions without additional
smoothing filters [43–45].
To circumvent these issues, a more regular spline space was used as a search space, as

performed originally in so-called CAD-based structural shape optimization [43,46], and
more recently in isogeometric shape optimization [47–52]. The spline functions are well
suited for shape optimization since they have been built for geometric modeling in CAD.
More precisely, they are of higher regularity and thus imply fewDOF associated to control
points positions. They can conveniently describe a geometry and, more importantly, a
geometry evolution. For specimen shape optimization in our context, let us note that
splines were also used in [18], where the obtained spline geometry was given as an input
toAbaqus for each computation in theoptimizationprocess. Such a techniquemay require
a lot a remeshing steps, especially when estimating sensitivities.

Standard FFD

Our goal is to take advantage of the spline properties but also to use them in a non-
invasive way so that usual FE simulation software can be called upon without remeshing.
To do so, it is proposed to rely on the FFD concept that was first introduced in [26] in
the field of computer graphics and later applied for shape optimization in many contexts
[25,53–56]. In some sense, the FFD technique allows to build the spline space as a vector
subspace of the FE vector space [25]. More precisely, FFD consists in embedding the
initial FE geometry into a (usually) spline morphing box. Therefore the deformation of
the FE mesh during the shape update can be constrained to follow the deformation of
the morphing box, the latter being related to the movement of its control points. More
precisely, the deformation of themorphing box is applied to the nodes of the FEmesh; that
is, each FE node is prescribed to move as the point at the corresponding location inside
the morphing box. Denoting by sfe and scp the vectors collecting the FE design variables
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(i.e. the movement of the FE nodes) and spline design variables (i.e. the movement of the
box control points), respectively, it can thus be written:

sfe = CT
FFD scp, (6)

where CFFD is the FFD operator that gathers the evaluation of the spline functions at the
FE nodes of the mesh, see [25]. This method is interesting because it decouples the design
space (spline-based) from that of the geometry description (FE-based).
Not all DOF associated to each control point of the morphing box are necessarily

considered as independent design variables. A linear operator Cs can be defined to group
some of the design variables in scp:

scp = Cs s, (7)

which leads to consider vector s that gathers the truly independent design variables.
Recapitulating, the link between the design variables s and sfe can be written as follows:

sfe = Cupdate s with Cupdate = CT
FFD Cs, (8)

which exhibits the reduced-order treatment performed in terms of design. At this stage,
let us mention that, in opposition to classic reduced basis methods in simulation, Cupdate
is sparse.

Univariate spline-based FFD

Following the common practice in shape optimization with FFD, a first path would be to
embed the whole specimen FE mesh into a single bivariate FFD morphing box [25]. The
main advantage is that it would be possible to update, up to a certain extent, the whole
mesh directly with control points. The problem is that it introduces unnecessary control
points in volume which can distort the mesh without changing the shape. Alternatively,
it is proposed to create, in this work, one univariate morphing box for each geometrical
feature edge (circle, notch, line...) that is to be optimized. Therefore, the morphing box,
which is a curve in 2Dhas to conform to the initial geometry of the feature edge it controls.
Similarly to Eq. (6), we end up with a FFDmatrixCe

FFD linking the FE design variables sefe
that move the edge (i.e. not all the FE mesh nodes) to the design variables secp associated
to the control points of the spline FFD curve:

sefe = (Ce
FFD

)T secp. (9)

From a practical point of view, this variant requires knowing the location of the FE nodes
in the parametric space of the spline FFD curve. This may imply inverting the spline
curve mapping (the parametric space is no longer the same as the physical space as with
simple bivariate boxes). For an easiest treatment, the edge nodes were directly defined
in the parametric space of the FFD curve and mapped onto the physical space using
the spline transformation before generating the FE mesh. Further details will be given in
Sect. “Numerical examples” (see, in particular, Fig. 9).
With such a choice, all control points have an equivalent influence on the edges they

control. This choice avoids the condition number related issues (if a volume control points
has a slight influence on the geometry) as in [25]. Moreover, refinement of the box does
not lead to extra treatment if needed. However, the drawback is that only a subset of the
FE nodes is controlled by the modification of the morphing boxes. An efficient technique
to update the FE mesh in the bulk, given an evolution of the features edge nodes through
sefe needs to be built.
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Mesh updating strategy

In order to avoid remeshing during optimization, it is proposed to use a mesh morphing
technique that allows to propagate inside the domain a variation of the edge geometry
through sefe. To do so, a simple linear elastic boundary value problem is defined with a
unitary elastic modulus E = 1 and a zero Poisson ratio. The deformation of the edges is
considered as a prescribed displacement on the corresponding nodes, and the goal is to
obtain the resulting displacement sfe of all FE nodes, which is the sought mesh correction
field [57,58]. In practice, a static condensation is performed which leads to the morphing
matrix Cm such that:

sfe = Cm sefe with Cm =
[

I
− (Km

rr
)−1 Km

re

]

, (10)

where Km
rr and Km

re are the sub-matrices of the stiffness matrix Km of the morphing prob-
lem and indices e and r define the DOF of the edge nodes and of the remaining nodes,
respectively. The inverse of operator Km

rr is obviously not explicitly computed. Only a LU
factorization is performed and an efficient multi right-hand side solver is used to compute
Cm.
From all these steps, a unique matrix Cupdate can be defined that reduces the initial

design space related to themovement of all FEnodes to a low-dimensional design subspace
associated to the sole independent edge design variables collected into se:

sfe = Cupdate se with Cupdate = Cm
(Ce

FFD
)T Ce

s . (11)

Obviously, operator Ce
s is the counterpart of Cs in (7) for edge design variables. Once

again, this composition of operators allows an explicit link between (few) edge design
variables and the movement of all mesh nodes. Figure 1 illustrates the transformations
involved by the different operators. Starting from any FEmesh, it defines a reduced design
subspace, similarly to the reduced basis methods in computational mechanics which per-
forms a projection onto a reduced approximation subspace. This operator is assembled
once before starting the optimization solver.

Control of mesh distortion

A typical issue to avoid during shape update is the intersection of an edge with itself or
with another edge. This issue can happen if control points associated to design variables
se cross each other. It results in geometries that have no physical meaning, and somemesh
elements can be totally or partially flipped as exemplified in Fig. 2. The elastic morphing
can also lead to excessive distortion of the mesh elements. Indeed, this morphing is based
on the resolution of an unphysical boundary value linear elastic problem that could lead
to strain smaller than -1 in some elements, thereby making them flip. Other types of
morphing could also be used [58].
Excessive element distortion results in a small transformation Jacobian determinant

whereas it becomes negative for flipped elements. Therefore, a constraint function was
defined that helps keeping this quantity above a certain positive threshold εJac at each
Gauss point throughout the optimization process. Besides, this quantity is already com-
puted to obtain the stiffness matrix needed for the cost function, so it adds a marginal
computational cost. For computation purposes, the constraint function is normalizedwith
the initial values of the transformation Jacobian determinant. The constraint reads:
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Fig. 1 Illustration of the mesh updating strategy with minimal remeshing: (top-left) design variables se

defined as a subset of edge control points DOF; (top-right) edge control points displacement secp = Ce
s s

e ;

(bottom-left) edge FE nodes displacement sefe = (Ce
FFD )

T secp ; (bottom right) all FE nodes displacement
sfe = Cm sefe

Fig. 2 Non permissible geometry, due to the loop made by the upper edge

∀k ∈ [1..npg ],
(det(J(se)))k
(det(J0))k

≥ εJac , (12)

where npg is the number of Gauss points in the FE model, (det(J))k is the transformation
Jacobian determinant at Gauss point k , (det(J0))k is the initial transformation Jacobian
determinant at Gauss point k , and εJac is the chosen threshold.
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Remark If at convergence of the optimization algorithm, this constraint is active, itmeans
that the morphing may have distorted the mesh too much. This is a good indicator that
allows us to remesh the domain with the new shape and restart a new optimization phase
[58].

Appropriate modeling of the specimen shape optimization problem
Now that the design space has been defined, the proposedmodeling approach to formulate
the original shape optimization problem is presented. The cost function used today in
the field are first reviewed (see, e.g., [20,22,23]). They are based on the knowledge on
noise propagation in the identification workflow recalled in Sect. “Constitutive parameter
identification from DIC”. They all aim at optimizing the shape of a specimen to best
identify the constitutive parameters of a specificmodel. Then, the optimization problem is
improved and complemented with constrains in order to get a physically sound geometry.
An example with a simple tension beam is presented at the end of this section to validate
our modeling choices.

Construction and evaluation of the cost function

As recalled in Sect. “Constitutive parameter identification from DIC”, the covariance
matrix provides an estimation of the quality of the identified parameters [20,22,23].
Improving the quality of the identification can thus be achieved by “minimizing” this
covariance matrix that expresses the uncertainty on the constitutive parameter values, i.e.
by “minimizing” [Covq](se) = H−1

FEMU (se) (see Eq. (5)) with respect to design variables se
that modify the geometry of the specimen. This section defines what “minimize” means
for a matrix.

Physical meaning of the eigenvalues of the covariancematrix

The idea proposed in [20,22,23] is to work on the eigenvalues of the covariance matrix.
These eigenvalues have a physical meaning when looking at the multivariate normal
distribution associated to the covariance matrix [Covq]. In fact, the isosurface where
qT [Covq] q equals 1 is an ellipsoid where each principal semi-axe direction is given by an
eigenvector of [Covq], and their size is the square root of the associated eigenvalue. An
illustration is shown with 2 variables on Fig. 3.
To minimize the uncertainty on the identified constitutive parameters, this ellipse

should be as small as possible, meaning that [Covq] eigenvalues should be as small as
possible. These eigenvalues also correspond to the inverse of the FEMU functional cur-
vatures near the optimum set of constitutive parameters, since [Covq] = H−1

FEMU and
HFEMU is an approximation of the Hessian matrix of Fp (see Eq. (1)). With this point of
view, decreasing [Covq] eigenvalues improves the FEMU functional convexity, which also
translates in a better confidence in the identified constitutive parameters.

Defining a criterion over eigenvalues

In order to perform an optimization of the constitutive parameter identification proce-
dure, we need to derive a unique scalar criterion from [Covq] eigenvalues. Several choices
exist.
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Fig. 3 Bivariate normal distribution associated with variances 1. and 2. and covariance 0.5. Eigenvalues are
�1 = 0.79 and �2 = 2.21, associated to eigenvectors [−0.92, 0.38] and [0.38, 0.92]. In black, the ellipse with
semi-axes of lenghts

√
�1 and

√
�2

Feld et al. [22] minimize the ratio of the largest eigenvalue over the lowest. This choice
improves the conditioning of [Covq] and also HFEMU . Hence, the numerical errors are
reduced during the Gauss-Newton FEMUminimization. However, it does not necessarily
enhance the sensitivity to the sought parameters. Indeed, an increase of both eigenvalues
can lead to a decrease of this ratio, whichmeans that the optimized experimentmay be less
sensitive to the sought constitutive parameters. Graphically, with the example of Fig. 3,
this criterion leads to an ellipse looking more like a circle, but it does not affect the size of
that circle.
Bertin et al. [20] and Chamoin et al. [23] suggest that the determinant of [Covq] can

be used as a criterion—they call it the uncertainty volume. In this case, all eigenvalues
are contained equally in the criterion. But once again, it does not necessarily enhance the
sensitivity to all constitutive parameters. As a matter of fact, the optimization procedure
can lead to decreasing some eigenvalues and increasing others at the same time. In this
case, parameters that were not well identified with the initial experiment can be even less
well identified in the optimized experiment. Graphically, with the example of Fig. 3, this
choice results in an ellipse with a smaller surface. Yet it does not prevent the ellipse from
getting thinner and longer.
Bertin et al. [20] and Chamoin et al. [23] minimize the largest [Covq] eigenvalue. In

this case, only the worst parameter sensitivity matters. This choice ensures that each
constitutive parameter will be identified with an uncertainty that will not be greater than
the initial maximum uncertainty. Graphically, this choice makes the circumscribed circle
of the ellipse smaller. The shapeof the ellipse can vary but its largest semi-axis is necessarily
smaller at the end of the optimization than the largest initial semi-axis. In the same spirit,
the optimization problem will consist in minimizing the largest eigenvalue of [Covq] or
equivalently to maximize the smallest eigenvalue ofHFEMU :

se� = arg min
se

λmax ([Covq]) , (13)

= arg min
se

1
λmin (HFEMU )

, (14)
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= arg min
se

2γ 2

λmin
(
∇qv HDIC ∇qvT

) . (15)

The objective function to minimize, scales with the image noise variance γ 2. One way to
improve parameter identification from full-fieldmeasurement thus consists in developing
alternative DIC algorithmswhich are less sensitive to image noise [59,60]. The noise being
independent on the sample shape, it will not be taken into account in the sequel.

Computation of the sensitivity fields w.r.t. constitutive parameters

First, in order to compute the sensitivity fields∇qv, it is necessary to choose values for the
different constitutive parameters of the selected constitutive law, because of the need to
know v(q). These parameters are defined numerically before the optimization process and
are not modified during the optimization. Hence, it may be preferable to choose values
that are not too different from those expected.
Since we aim at identifying linear elastic constitutive parameters, it is possible to com-

pute the derivative analytically for the simulated field with respect to a given parameter qi.
Indeed, v comes from a FE static problem resolution Kv = f , where the stiffness matrix
K depends on q and the applied load f does not. The derivative reads:

K,qi v + Kv,qi = 0 , (16)

which leads to:

v,qi = −K−1K,qi v , (17)

where ,qi denotes ∂
∂qi . Since the FE basis functions do not depend on q, only the Hooke

matrix derivative is needed to compute K,qi . This derivative can be computed exactly
when the constitutive law is linear. K,qi can then be assembled with the same routines as
for the stiffness matrix K using the Hooke matrix derivative instead of the Hooke matrix.
Each parameter qi is usually normalized with its chosen initial value q0i in the FEMU

minimization process (to reach a balance of the sensitivities of the different parameters).
Let us denote by qi the normalized parameter such that qi = q0i qi. As a result, we use v,qi
instead of v,qi , and we have the following relation:

v,qi = q0i v,qi . (18)

Approximation of the DIC Hessian to take into account the camera’s field of view

The last thing to compute the cost function in (15) is to evaluate the approximation of
the Hessian HDIC of the DIC functional. This operator is given as an output of the DIC
problem. Its form is detailed in (4). The optimization of the specimen geometry is intended
to be carried out before any experiment. And since the speckle pattern is generally not
known a priori, theHDIC matrix cannot be computed as such, because I and thus ∇I do
not yet exist.
Feld et al. [22] proposed to replace HDIC with an identity matrix. In contrast, Bertin

et al. [20] and Chamoin et al. [23] recommended the use of a mean-field assumption.
This latter assumption consists in considering that the graylevel gradient ∇I varies a lot
more than the shape functions N in (4). As a consequence, we can make the following
approximation:

HDIC ≈ G2
I M , (19)
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with

M =
∫

I
NTN dx and G2

I = 1
|I |

∫

I

[(
∂I
∂x

)2
+

(
∂I
∂y

)2
]

dx .

M is a pseudo mass matrix and GI is a measure of the mean graylevel gradient similar
(yet not exactly equal) to the Mean Intensity Gradient (MIG) as defined by Pan et al. [61].
Similarly to the image noise variance term, this factor was removed from the objective
function in this study, since its value depends on a speckle pattern which is unknown at
this stage and constant with respect to the design variables se. Note that it is possible to
maximize this value by working on the pattern itself regardless of the shape [61,62].
Now, since the aim is to optimize the shape of the specimen, its overall size may change.

Consequently, the experimental set-up may have to be adapted, especially the camera’s
field of view. Indeed, if the specimen is larger, the camera has to be placed further away
(increase of the distance Z between the object and the camera) or the focal length f must
be reduced in order to capture the whole ROI. By doing so, a given physical displacement
will lead to a smaller displacement in pixels, given the finiteness of the image definition. To
take this effect into account, theHDIC matrix is written by considering world coordinates,
in contrast to (19) and [20,23] where fields are expressed in the pixel coordinates. To this
end, the change of variables I = p(	) is performed in (4), where 	 is the physical ROI
on the specimen, and p is the camera projector model [63]. To improve readability, N is
redefined to be FE shape functions in the physical ROI	, as ifN◦p−1 was written instead
of N in the previous equations where quantities are defined in the image.HDIC becomes:

HDIC ≈ G2
I
2

∫

	

| det(∇p)| NTN dX . (20)

A pin-hole camera model (see, e.g., [63]) is considered as a first order approximation
of the mapping from a point in the world at coordinates (X, Y, Z) to its projection at
coordinates (x, y) in the image. It is possible to express ∇p. Indeed, the pinhole model
states:

p : X, Y 	→ x = −fx
X
Z

+ x0, y = −fy
Y
Z

+ y0 , (21)

where fx and fy, in pixels, are the camera focal sampling parameters along the 2 image
directions, Z is the distance between the specimen and the camera, and x0 and y0 are the
center of the image (in pixels). The projector gradient can then be obtained:

∇p =
[
− fx

Z 0
0 − fy

Z

]

. (22)

HDIC thus reads:

HDIC ≈ G2
I
2

fxfy
Z2 M(se) with M(se) =

∫

	

NTN dX, (23)

and where M is a true mass matrix computed in the FE coordinate system. We end
up with an additional weighting coefficient which depends on the experimental setting:
fx (respectively fy) depends on the focal length f with a parameter kx (resp. ky) that is
intrinsic to the camera (it corresponds to a number of pixels per meter on the sensor),
such that fx = kx f (resp. fy = ky f ) (see, again, [63]). Assuming kx ≈ ky = k , the DIC
Hessian reads:

HDIC ≈ G2
I
2

k2f 2

Z2 M(se). (24)
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This expression has the advantage of taking explicitely into account camera settings that
have an effect on the field of view. It is theoretically possible to increase the sensor def-
inition k to improve identification by considering higher definition sensors. But as this
parameter depends on the choice of a camera and is anyway limited to the technological
capabilities, it is considered fixed.
So far, we are only looking to improve a test piece, without considering a particular

experimental setup. In the following, an equivalent objective function is formulated that
does not involve any camera parameters. Indeed, by application of Thales theorem and
assuming that pictures are always taken so as to maximize the images resolution on the
ROI, the coefficient f 2

Z2 can be linked to the surface ratio of area of the sensor S0 to that of
the ROI S:

fxfy
Z2 = k2f 2

Z2 = k2
S0
S

. (25)

S depends on the specimen geometry. Therefore, it should be in the cost function, in the
form of the surface of the rectangle that is tangent to the ROI. Conversely, S0 being the
sensor size, it is considered fixed. Eventually, the DIC Hessian is approximated by:

HDIC ≈ G2
I
2

k2S0
S

M(se). (26)

Improvement with constraints to take into account the boundary conditions magnitude

A tension test is considered for the identification of elastic constitutive parameters. In this
work, only the shape was optimized. Boundary conditions are fixed during the optimiza-
tion process.
As mentioned in the introduction, studies of the literature do not limit the maximum

admissible strain or stress. As a result, there may be a competition between the loading
magnitude and the shape parametrization. Indeed, if the maximum strain can increase
during shape optimization, then the question is: which shape is better? (1) the optimized
one with a fixed loading or (2) the initial one with an increased loading? This competi-
tion is due to the fact that the loading magnitude is not one of the design variables. It
seems extremely important to consider the loading level in the optimization problem. In
the following, given the linear elasticity context, it is chosen to optimize the shape with-
out changing either the force (or imposed displacement) applied to the specimen or the
maximum strain.
Limiting the maximum strain does not prohibit having a specimen which presents a

strain concentration. It only allows to separate the improvement due to a better strain
distribution within the specimen from that due to the increase of the strain level due to
loadingmagnitude increase. Finally, amodel often needs to be calibrated in a certain strain
range and this optimization constraint also forces the experiment to properly sample the
behavior in the desired strain range.
This equivalent strain can be computed thanks to the displacement field v that can be

retrieved from the cost function sensitivity field computations (see (17) where v also has
to be computed to get v,qi ). Hence, a constraint that takes into account the equivalent
strain values on the specimen under loading was added to the optimization problem. The
constraint reads:

∀k ∈ [1..npg ],
(εeq(se))k

εmax
≤ 1 , (27)
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Fig. 4 Flowchart of the proposed spline-based optimization process to improve a specimen shape with
respect to identification uncertainty

where (εeq)k is the equivalent strain value at theGauss point k and εmax is a given threshold.
In this study, the Von Mises equivalent strain was chosen arbitrarily.

Resulting constrained optimization problem

Recapitulating, let us now write the full constrained optimization problem to solve. As
stated above, although they could be optimized independently, the external loading mag-
nitude, the image noise γ , the image gradient GI , the sensor definition k and the sensor
size S0 are considered fixed since they do not depend on the shape of the object. Conse-
quently, we end up with the following constrained optimization problem to solve:

se� = arg min
se∈Rns

S(se)
λmin

(
∇pv(se) M(se) ∇pvT (se)

) ,

subject to
(det(J(se)))k
(det(J0))k

− εJac ≥ 0, ∀k ∈ [1..npg ],

1 − (εeq(se))k
εmax

≥ 0, ∀k ∈ [1..npg ]. (28)

In other words, the aim is to find the design variables se that minimize the largest eigen-
value of the approximate covariance matrix of constitutive parameters q under the con-
straint that the Jacobian of the transformation on each Gauss point k remains strictly
positive and that the maximum equivalent strain does not increase. A flowchart of the
overall optimization process proposed to optimize a specimen shape with respect to iden-
tification uncertainty is depicted in Fig. 4.

Analysis of a toy problem

To analyze the cost function, let us consider the analytic optimization of a simple isotropic
plain specimen in tension as presented in Fig. 5. An isotropic linear elastic material is
chosen, thus involving two parameters: the Young modulus E and the Poisson coefficient
ν. Symmetry Dirichlet boundary conditions are applied at the bottom and right edges, the
upper edge remains free, and the left edge is subjected to a uniformly distributed load. F
denotes the resultant force, which is kept constant.
In this very simple case, a closed form solution can be found when only the height h and

the length L of the rectangle are the design variables. The resulting displacement field is
the following:

ux(x, y) = F
hE

x , (29)

uy(x, y) = −νF
hE

y . (30)
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Fig. 5 Example of the simple isotropic plain specimen in tension: definition of the dimensions of the domain
and the applied boundary conditions in the (x, y) coordinate system

When only one constitutive parameter is considered, the operator whose smallest eigen-
value is involved in the cost function of (28) is a scalar which consists in integrating the
sensitivity field over the ROI:

vT,qi M v,qi =
∫

	

vT,qi v,qi dx =
∫

	

∥
∥v,qi

∥
∥2 dx . (31)

Note that in the case of only one single constitutive parameter, normalization (18) was
not applied.

Cost function w.r.t. Poisson ratio only

Optimizing the specimen shape through Problem (28) with respect to the Poisson ratio
only reads:

(L, h)� = arg min
(L,h)

3E2

F2Lh
or (L, h)� = arg min

(L,h)

3E2

F2 , (32)

without or with the weighting of the cost function by the specimen area S = hL, respec-
tively. Without weighting, the cost function will push the sample thickness h to infinity.
This is indeed relevant because the displacements related to the Poisson effect are maxi-
mum far from the horizontal symmetry axis. In reality, increasing the thickness h of the
specimen will require increasing the field of view bymoving back (increasingZ) or adjust-
ing the lens (reducing f ), which, given the finiteness of the sensor, does not change the
optimality of the specimen. When the field of view of the camera is considered by adding
the weight S to the functional, it can be seen that the latter no longer depends on h (or L),
which is consistent with the previous analysis.

Cost function w.r.t. YoungModulus only

When the cost function (28) is written with respect to the Young modulus E only, and
setting ν = 0, it is defined as follows:

(L, h)� = arg min
(L,h)

3h2E4

F2L2
, (33)

which clearly illustrates the competition between the thickness h and the resultant of the
load F . In this example, optimizing the shape of the specimen (by reducing the height h)
is strictly equivalent to increasing the external force F by the same amount. In this case,
the intrinsic quality of the geometry is not improved. Worse, the risk is to produce more
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complex geometries, therefore more expensive to machine, whereas an increase in the
load is sufficient. Finally, one could imagine even worse situations where the refinement
of the specimen improves the identification less than a simple increase of the loading.
It is then important to consider the magnitude of the loading in the cost function. It

was done, here in an elastic context, by limiting the maximum strain to its initial value,
which allows to decouple the improvement of the specimen due to an apparent increase
of the loading (increase of the strains) and the one due to an improvement of the strain
distribution in the specimen at constant maximum strain.

Numerical examples
Asapreamble, let us specify that all the numerical experimentsweremade in ahome-made
code written in python language and GMSH was used for FE mesh generations. Then,
an optimization algorithm relying on gradient-based algorithms as commonly performed
in spline-based shape optimization [47–49,51] was chosen. More precisely, the built-
in SLSQP function from the library scipy.minimize was used as a black box. It is
based on the SQPmethod [64] that can be viewed as an extension of the Newton method
for constrained optimization. At each major iteration, an approximation is made of the
Hessian of the Lagrangian function associated to (28) using a quasi-Newton updating
method. These methods are appealing because the Hessian is not directly computed
but approximated through the gradient variations during the resolution, thereby offering
simplicity, minimal computational cost and good convergence properties.

Validation of the optimization procedure on an isotropic plain specimen with respect to

one single constitutive parameter

To start with, the tension beam of Sect. “Analysis of a toy problem’ ’ was considered
with L = 200 mm. Instead of the derivation of an analytic optimization, we perform now
the numerical resolution of problem (28). The height h(x) of the specimen is adjusted to
minimize the variance of the Young modulus only. It is parametrized by the evolution of
the top line which plays the role of the feature. The design space is built from 6 control
points of a quadratic morphing box.
Only two design variables were actually chosen in this example. These design variables

were chosen so as to keep the left side of the top edge horizontal, as shown in Fig. 6. To
do so, a C0 line was added at x = 100 mm by repeating a knot. C1-continuity was then
ensured by imposing some control points to move like their neighbors, hence enforcing
tangential directions [51]. Exceptionally in this example, to verify that the algorithm is
robust, the initial shape was set such that h(x) = 100 mm, which corresponds to an
homogeneous strain 6 times smaller than the maximum strain allowed. Otherwise the
initial shape would already be optimal and the convergence of the algorithm could not be
analysed.
Figure 7 shows the results with the optimization algorithm. As one would expect, the

optimal shape is still a rectangle but the height is devided by 6. This simple example
allows to validate the expression of the cost function as well as the numerical FFD-based
procedure for updating the geometry. The optimal value of the cost function is divided by
one and a half orders of magnitude (divided by 36) which is consistent with the analytic
expression of (33).
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Fig. 6 Example of the isotropic plain specimen: definition of the two design variables. First design variable:
displacement along y of the 4 left control points. Second design variable: displacement along y of the 2 right
control points. A C0 line was added at x = 100 mm. In light gray, the initial shape (h(x) = 100mm) and; in dark
grey, the result of the optimization process (hopt (x) = 16.67mm)

Fig. 7 Example of the isotropic plain specimen with only two spline-based design variables: evolution of the
cost function value and geometry with the iteration number of the optimization process

Remark Let us notice that at the first iteration the objective function is lower than its
value at convergence. However, the algorithm used (which is based on the SQP method)
may not lead to feasible solutions at all iterations in the sense that the constraints may not
be satisfied at each iteration. This may explain why the algorithm did not stop with this
first solution.
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Fig. 8 Example of the orthotropic specimen with two holes: boundary condition definition, initial geometry
to be optimized and corresponding finite element mesh (inspired from [22])

Fig. 9 Definition of the design space for the orthotropic specimen with two holes: 1D-FFD morphing box
(left: parametric space; right: physical space) with its control points (black points) and position of the
controlled FE nodes (blue points)

Amore complex example: open hole orthotropic specimen optimization with respect to

several constitutive parameters

The developed methodology was next applied to a more complex problem. For demon-
stration purpose, let us investigate the example depicted in Fig. 8. This problem, inspired
from [22], consists in optimizing an orthotropic specimen in tension in order to minimize
the uncertainty with respect to the elastic parameters. In [22], the position of the holes
was already optimized. The study presented here goes further by improving the geometry
of the two holes in addition to their position. Note that this choice of limiting the anal-
ysis to the holes shape is arbitrary; obviously, the optimization of the outer edge of the
specimen could have also been considered with our methodology, as in Sect. “Validation
of the optimization procedure on an isotropic plain specimen with respect to one single
constitutive parameter” . In this example, two quadratic periodic univariate spline boxes
(1D-FFD) were used to optimize the hole shapes as shown in Fig. 9. Note that the position
of the FE nodes in the parametric space of the spline curves is denoted by ξFE .
Similarly to [22] and to reduce the number of design variables in this specific case, the

specimen geometry was treated so as to keep the central symmetry. It divides the number
of design variables by a factor 2. This symmetry can be expressed as a special form of
reduction matrix Ce

s , and the matrix Cupdate can be defined to map the design variables se
to the modification of all FE nodes position sfe (see (11)).

Optimization w.r.t. to orthotropic linear elastic parameters

The goal is to improve this geometry with respect to its sensitivity to orthotropic linear
elastic constitutive parameters: the longitudinal Youngmodulus E1, the transverse Young
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Fig. 10 Improved geometry (in black) compared to the initial geometry (in grey), and 1D-FFD morphing box
and its control points position at the end of the first optimization (in red)

Fig. 11 Example of the orthotropic plate with two holes: evolution of the cost function value and specimen
shape as a function of the iteration number in the first optimization run

modulus E2, the shear modulus G12 and the Poisson ratio ν12. Similarly to [22], Dirichlet
boundary conditions were prescribed and no other information other than the displace-
ment field was used. As a consequence, the Youngmodulus and the shearmodulus cannot
be identified as such. Therefore, the sample is optimized with ratios E2

E1 ,
G12
E1 , used together

with ν12, as constitutive parameters of interest in this example. The strain constraint is
expressed as in (27) with εmax = max

k
(εeq(se0))k .

First optimization phase The optimization leads to the geometry shown in Fig. 10.
The optimal shape is superimposed on the initial shape and the deformed morphing box
(along with the optimal position of the control points) is also represented in red. It is
interesting to see that the size of the holes has increased without increasing themaximum
equivalent stress. In fact, the area of stress concentration has expanded. Fig. 11 shows the
evolution of the cost function. It can be seen that it is possible to improve the cost function
value by a factor 10 without reaching higher equivalent strain values. This means that the
uncertainty on the worst identified parameters was reduced by more than 3 with the very
same experimental set-up.
Next, in Fig. 12 the absolute value of the determinant of the transformation Jacobian

of each Gauss point is plotted against the iteration number. The constraint was set with
εJac = 0.1. It can be noticed that at the end of the optimization process, the Jacobian
constraint is active for some Gauss points, that is to say, the determinant of the jacobian
is exaclty equal to 0.1. This is not due to purely geometrical issues such as loops on the
edges, but it comes from the used mesh morphing technique that propagated the edges
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Fig. 12 Example of the orthotropic plate with two holes: evolution of the transformation Jacobian of each
Gauss point as a function of the iteration number for the first optimization run (εJac = 0.1)

Fig. 13 Flipped elements when the deformation of the edges is too important (circled in blue)

deformation to the rest of the FE nodes (mesh morphing step). Indeed, when the edges
deformation is too large, using an elastic morphing can lead to flipped (or highly warped)
elements, even if the specimenedges remainphysically sound (seeFig. 13). In this situation,
it means that the shape morphing technique used to limit the computational cost actually
restricts the shape evolutions. There is thus no other choice but performing a remeshing
step and restarting the optimization.
Second optimization phase As mentioned in a remark at the end of Sect. “A spline-

based regular reduced-order design space”, a solution is then to remesh the interior of the
specimen at the end of the optimization process, and to run another shape optimization
with this newmesh. By keeping the same nodes as for the oldmesh on the feature edges, in
particular for the optimized holes, the same FFDmatrixCFFD as for the first optimization
process can be kept. Hence, only the morphing operator Cm is to be re-assembled.
The results obtained after the second optimization step are shown in Figs. 14 and 15.

With the new mesh, it is possible to reach higher free form deformations of the holes and
obtain larger holes. During this step, the cost function value is reduced by a factor 3, which
brings the overall reduction factor more than 30.
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Fig. 14 Example of the orthotropic plate with two holes: improved geometry after the second optimization
run (in black) compared to the optimal shape obtained after the first optimization run (in grey), and
corresponding 1D-FFD morphing box and its control points position (in red)

Fig. 15 Example of the orthotropic specimen with two holes: evolution of the cost function value and
specimen shape during the second optimization process (after the remeshing step)

Again, the evolutionof the transformation Jacobianof eachGausspoint is plotted against
the iteration number (see Fig. 16). This time, the constraint is not active at convergence.
What stopped the optimization are bounds that were arbitrarily chosen for the design
variables.
Overview of the results To have an overview of how all three parameters sensitivity have

been impacted by the optimization process, looking at H−1
FEMU and its eigenvalues λi, as

detailed in Table 1, is convenient. Here, the parameters are rather decoupled (covariance
values are small compared to variance values), and theworst initially identifiableparameter
was E2

E1 .At the endof thefirst optimization step, its variance is dividedby10 andparameters
are still rather decoupled.At the endof the secondoptimization step, its variancedecreases
again. Note that some parameters are now coupled (E2E1 and ν12). It can be also observe
that G12

E1 variance decreases at each step, and ν12 variance slightly increases, in such a way
that the eigenvector wi associated to the greatest eigenvalue at the last step has its larger
component on this constitutive parameter.
These observations can also be made by looking at the sensitivity fields for each con-

stitutive parameter. Indeed, Fig. 17 shows that the sensitivity magnitude increases for E2
E1

and G12
E1 , and slightly decreases for ν12.
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Fig. 16 Example of the orthotropic plate with two holes: evolution of the transformation Jacobian of each
Gauss point as a function of the iteration number for the second optimization run (εJac = 0.1)

Table 1 Covariance matrixH−1
FEMU (the three parameters are ordered as: E2E1 ,

G12
E1

, ν12), its eigenvalues
λi and the associated eigenvectorswi (same order)

Initial geometry End of 1st1st1st optim. step End of 2nd2nd2nd optim. step

H−1
FEMU

⎡

⎢
⎣

27 −0.50 −0.047

−0.50 1.6 0.0072

−0.047 0.0072 0.31

⎤

⎥
⎦

⎡

⎢
⎣

2.6 −0.28 0.24

−0.28 0.29 −0.020

0.24 −0.020 0.47

⎤

⎥
⎦

⎡

⎢
⎣

0.63 −0.050 0.14

−0.050 0.14 −0.017

0.14 −0.017 0.67

⎤

⎥
⎦

λi

0.31

1.5

27

0.26

0.45

2.7

0.14

0.51

0.80

wi

⎡

⎢
⎣

0.0017 0.020 −1.0

−0.0051 1.0 0.020

1.0 0.0051 0.0018

⎤

⎥
⎦

⎡

⎢
⎣

0.12 0.10 −0.99

0.99 −0.058 0.12

−0.046 −0.99 −0.11

⎤

⎥
⎦

⎡

⎢
⎣

0.099 0.74 −0.66

1.0 −0.070 0.070

0.0056 −0.67 −0.74

⎤

⎥
⎦

(a) Initial sensitivity to E2
E1

. (b) Initial sensitivity to G12
E1

. (c) Initial sensitivity to ν12.

(d) Step 1 sensitivity to E2
E1

. (e) Step 1 sensitivity to G12
E1

. (f) Step 1 sensitivity to ν12.

(g) Step 2 sensitivity to E2
E1

. (h) Step 2 sensitivity to G12
E1

. (i) Step 2 sensitivity to ν12.

Fig. 17 Sensitivity fields magnitude for each constitutive parameter, initially and at each optimization step
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Fig. 18 Example of the orthotropic specimen with two holes: evolution of the cost function value and
zooms on the hole shapes during the optimization process (including one remeshing step each) for 2
different initial positions of the holes

A very ill-posed problem

To illustrate the high ill-posedness of the problem, the algorithm is started from two
different initial shapes. The orthotropic linear elastic open hole tensile test of the previous
section was considered again with two slightly different initial positions of the holes.
Figure 18 presents the evolution of the objective function during the convergence of the

algorithm for both initializations along with the evolution of the corresponding shapes. It
can be noticed that the two different initial guesses lead to significantly different optimized
shapes. However, the objective functions of the optimized shapes is of the same order of
magnitude, which means that they are two different new designs which both significantly
improve identification. This illustrates the presence of a possibly large number of local
minima. This property strengthen our choice to consider reduced and regular design
spaces in such problems instead of too large and too generic design spaces like FE-based
or topology optimization. From an engineering point of view, considering the very same
algorithm with multistart could be interesting as it may provide a set of equivalently
optimal shapes, that the engineers could select based on other criteria like, for instance,
machinability.

Conclusion
In this paper, a methodology has been proposed to improve the sensitivity of a test to
the constitutive parameters of a given model through specimen shape optimization. Our
approach relies on non-invasive spline tools to enable kipping a classic FE formalism and
yet limit optimization to regular, manufacturable designs. It is also meant to fill the gap
between the existing approaches in terms of design space halfway between topology and
parametric optimization. Indeed, the FFD-based reduced basis approach developed herein
allows working with few design variables, yet keeping a rich search space that leads to a
vast range of geometries, provided that their topology is the same.We considered the case
where a pre-design of the specimen was available and the goal was to further improve its
geometry, with respect to the sensitivity to constitutive parameters for given boundary
conditions. In other words, the method is not intended to determine the ideal specimen
(if one exists), but more to improve an existing empirically designed specimen.
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Overall, the developed solution strategy consists in a non-invasive modern CAD-based
shape optimization that could obviously be applied successfully to other optimization
problems (such as structural shape optimization).
To define the optimization problem, the starting point was the cost function formula-

tion of Bertin et al. [20], which makes sense from experimental and mathematical points
of view. This objective function was improved including information coming from the
camera modeling, in order to tackle possible size changes throughout the optimization
process. Furthermore, material sensitivity fields, which are the derivatives of the dis-
placement field with respect to constitutive parameters, were computed analytically, i.e.
without using Finite Difference methods. Constraint functions were also added to ensure
that the obtained geometry remained physically sound. The first one involves the Jacobian
of the FE mesh transformation from the reference elements to the physical element and
ensures that no element is flipped or too much distorted. The second one sets a maxi-
mum equivalent strain, which is kept equal to the initial maximum equivalent strain in
order to guarantee that the cost function decrease could not be impacted by the boundary
conditions values. Let us note that these modeling ingredients could be applied to other
optimization solution strategies (independently of the definition of the design variables),
which should improve the obtained specimen shape in any case.
The validation of our methodology was in particular carried out on a tension beamwith

two holes C1-continuous periodic B-splines were used to create univariate morphing
boxes that control the FE nodes on the edge of each hole. The edge deformation then
propagated to the rest of the mesh via the solution of an elastic morphing problem. Like
this, no remeshing is necessary during the optimization process. The cost function value
was reduced by a factor 10 plus an additional factor 3 if the sample is re-meshed and
the optimization run again. Overall, the method was able to reduce the identification
uncertainty by a factor 6.
This work offers many opportunities for future investigations. Considering only the

solution of the optimization problem, a multilevel optimization of the shape could be
performed. Other algorithms or multi-start procedures could also be employed to avoid
being too dependent on the initialization. From the problem modeling point of view,
a first improvement could consist in making a difference between the ROI (where a
good sensitivity is needed) and the whole structure (on which the mechanical problem is
solved). The position and size of the ROI could also be defined as design variables. Finally,
the extension to non-linear material behaviors constitutes one of the major prospects
of this work. Although the proposed methodology may be applied from a fundamental
point of view, its detailed implementation in case of non-linear constitutive laws will
require further developments. It will not be straightforward, for example, to calculate
the sensitivity displacement fields w.r.t. the constitutive parameters in a fully analytical
way. The proper computation of such fields will depend on the non-linearity type, and it
may become invasive with respect to the simulation tool. If it is desired to remain non-
invasive, brute global finite difference approachesmay be required, thereby involving large
computational cost. Furthermore, from a modeling point of view, boundary conditions
should be considered as design variables as well in a non-linear context.
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