
Bai et al. Adv. Model. and Simul.
in Eng. Sci. (2021) 8:28
https://doi.org/10.1186/s40323-021-00213-5

RESEARCH ART ICLE Open Access

Non-intrusive nonlinear model reduction
via machine learning approximations to
low-dimensional operators
Zhe Bai1* and Liqian Peng2

*Correspondence:
zhebai@lbl.gov
1Computational Research,
Lawrence Berkeley National Lab,
Berkeley, CA 94720, USA
Full list of author information is
available at the end of the article

Abstract

Although projection-based reduced-order models (ROMs) for parameterized nonlinear
dynamical systems have demonstrated exciting results across a range of applications,
their broad adoption has been limited by their intrusivity: implementing such a
reduced-order model typically requires significant modifications to the underlying
simulation code. To address this, we propose a method that enables traditionally
intrusive reduced-order models to be accurately approximated in a non-intrusive
manner. Specifically, the approach approximates the low-dimensional operators
associated with projection-based reduced-order models (ROMs) using modern
machine-learning regression techniques. The only requirement of the simulation code
is the ability to export the velocity given the state and parameters; this functionality is
used to train the approximated low-dimensional operators. In addition to enabling
nonintrusivity, we demonstrate that the approach also leads to very low computational
complexity, achieving up to 103× in run time. We demonstrate the effectiveness of the
proposed technique on two types of PDEs. The domain of applications include both
parabolic and hyperbolic PDEs, regardless of the dimension of full-order models (FOMs).

Keywords: Computational mechanics, Model reduction, Machine learning,
Low-dimensional operators, Dynamical systems

Introduction
Modern computational architectures have enabled the detailed numerical simulation of
incredibly complex physical and engineering systems at a vast range of scales in both space
and time [31]. Even with improved high-performance computing, the iterative numerical
solutions required for design and optimization may quickly become intractable; the com-
putational demands for real-time feedback control are even more challenging [11]. For-
tunately, many high-dimensional dynamical systems, such as a discretized simulation of
a fluid flow, are characterized by energetic coherent structures that evolve on an attractor
or manifold with a lower dimensional intrinsic dimension [3,6,23]. This observed low-
dimensionality has formed the basis of reduced-ordermodeling, which nowplays a central
role in modern design, optimization, and control of complex systems. Despite the grow-

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-021-00213-5&domain=pdf
http://orcid.org/0000-0002-3092-0903
http://creativecommons.org/licenses/by/4.0/

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 2 of 24

ing importance of model reduction, the challenges of nonlinearity, identifying an effective
low-dimensional basis, and multiscale dynamics have limited its widespread use across
the engineering and natural sciences [10]. A leading method for reduced-order modeling
involves the Galerkin projection of known governing equations onto a mathematical or
empirical basis, although this approach is intrusive and challenging to implement. The
leading alternative involves black-box system identification, which is purely data-driven,
but generally yields uninterpretablemodels. In this work, we investigate and compare sev-
eral emerging techniques from machine learning, i.e. applied data-driven optimization,
for non-intrusive reduced-order modeling.
Intrusive model reduction methods, based on a working and decomposable numerical

simulation of the governing equations, provide the most general and widely used set of
techniques. Foremost in this arsenal is the Galerkin projection of the governing equations
onto a low-dimensional linear subspace, usually spanned by orthogonal modes, such as
Fourier, or data-drivenmodes from proper orthogonal decomposition (POD) [3,6,23,39].
These approaches benefit from a strong connection to the underlying physics, the ability
to include constraints to enforce preservation of the underlying dynamic structure, and
adaptivity [2,15–17]. In addition, there are several extensions around hyper-reduction to
improve efficiency for systems with parametric dependence or higher order nonlinear-
ities, based on the empirical interpolation method (EIM) [5] and the discrete empirical
interpolation method (DEIM) [19]. However, these models are limited to the dynamic
terms of the governing equations and the linear projection basis may not be optimal for
capturing the dynamics. The main drawback of intrusive methods is that they are chal-
lenging to implement, requiring considerable human effort and knowledge to manipulate
the governing equations and simulation code.
In contrast to intrusive model reduction, data-driven techniques are becoming increas-

ingly prevalent, catalyzed by the increasing availability of measurement data, the lack
of governing equations for many modern systems, and emerging methods in machine
learning and data-driven optimization. Collectively, these data-driven techniques form
the field of system identification [24,33,38]. Many techniques in system identification use
regression to identify linear models, such as the eigensystem realization algorithm (ERA)
[25] and dynamic mode decomposition (DMD) [4,30,49,56]; recently, both techniques
have been connected to nonlinear systems via the Koopman operator [13,36,46]. Another
classic technique in nonlinear system identification is the NARMAX algorithm [7,28,51].
Recently, powerful techniques in machine learning are re-defining what is possible in sys-
tem identification, leveraging increasingly large datasets and more powerful optimization
and regression techniques.Deep learning, basedonmulti-layerneural networks, is increas-
ingly used to model fluid dynamics and obtain closure models [29,32,37,40,42,52,61,69].
More generally, machine learning is having a considerable impact in the modeling of
dynamical systems and physics [8,12,44,50], for example relevant work in cluster-based
reducedordermodels [26], long-short timememorynetworks (LSTMs) [58,60], andGaus-
sianprocess regression [43,59].Of particular interest are techniques basedon theprinciple
of parsimony that seek the simplest models, with the fewest terms necessary to describe
the observed dynamics [8,12,34,35,47,48,50]. For example, the sparse identification of
nonlinear dynamics (SINDy) algorithm [12] uses sparse regression to identify the few
active terms in a differential equation. The resulting models balance model complexity

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 3 of 24

with descriptive power, avoiding overfitting and remaining both interpretable and gener-
alizable.
Data-driven techniques in system identification and machine learning are currently

being employed for advanced, non-intrusive, and reduced-order modeling, removing the
need for full-order model equations or a modifiable numerical code. Loiseau and Brun-
ton [34] extended the SINDy modeling framework to enforce known constraints, such
as energy conserving quadratic nonlinearities in incompressible flows. This so-called
Galerkin regression also enables higher order nonlinearities than are possible with stan-
dardGalerkin projection, providing effective closure for the dynamics of truncatedmodes.
Swischuk et al. [54] develop parametricmodels between input parameters and PODcoeffi-
cients for physics andengineeringproblems, comparingmany leadingmethods inmachine
learning. Peherstorfer and Willcox [41] develop time-dependent reduced order models
for partial differential equations, by non-intrusively inferring the reduced-order model
operator output as a function of initial conditions, inputs, trajectories of states, and full-
order model outputs, without requiring access to the full-order model. They prove that
for dynamics that are linear in the state or are characterized by low-order polynomial non-
linearities, the ROM converges to the projection of the FOM onto a low-order subspace.
Carlberg et al. [18] propose dimensionality reduction on autoencoders to learn dynamics
for recovering missing CFD data. Other non-intrusive ROMs have been developed based
on neural networks [22,27,62,63,68], sparse autoencoders [21], radial basis functions [66],
and kernelmethods [57,65]. Hybridmethods are also promising, for example bymodeling
the error of a Galerkin model to produce closures [67].
Despite the considerable recent progress in leveraging machine learning for non-

intrusive reduced-order modeling, current approaches still have a number of short-
comings. First, many methods are limited to low-order polynomial nonlinearities. All
of the above approaches learn the low-dimensional operators from full-system trajecto-
ries, which is expensive and limits the predictive accuracy, as the ROM trajectory is likely
to quickly deviate from the full-system trajectory. Current methods also have limited con-
sideration for stability and the interplay between regressionmethods and time integration
has not been explored. Finally, current approaches do not provide a framework for model
selection, as each method will likely be best suited to a different problem class.
In this work, we continue to develop and explore machine learning techniques for

non-intrusive model reduction, addressing many of the shortcomings described above.
In particular, we develop and compare numerous leading techniques in machine learn-
ing to produce accurate and efficient reduced order models. We focus primarily on the
class of Galerkin projection models, although these approaches may be extended to more
general models. To study the dynamical system in the latent space, we map from the
low-dimensional state at the current time instance to the next, in explicit or implicit
time integration schemes. We investigate a variety of regression models for the map-
ping, including k-nearest neighbors [1], support vector regression [53], random forest [9],
boosted trees [20], the vectorial kernel orthogonal greedy algorithm (VKOGA) [64,65] and
SINDy [12]. In the following, we explicitly consider stability and explore the connection
between various regression methods and their suitability with different time integration
schemes; for example, non-differentiable machine learning models are only amenable to
explicit time integration. We also explore the modeling procedures of varying complexi-

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 4 of 24

ties on two examples, the 1D Burgers’ equation and the 2D convection–diffusion equation
using both explicit and implicit time integrators.

Problem formulation
General nonlinear dynamical systems

This work considers parameterized nonlinear dynamical systems characterized by the
system of nonlinear ODEs

ẋ = f (x; t,μ) (1)

x(0;μ) = x0(μ), (2)

where t ∈ [0, T] denotes time with T ∈ R+ representing the final time, x ∈ R
N denotes

the state,μ ∈ D ⊆ R
p denotes the system parameters, x0 : D → R

N is the parameterized
initial condition, and f : RN × R+ × D → R

N denotes the velocity.

Galerkin projection

We assume that we we have low-dimensional trial-basis matrix V ∈ R
N×n
� (with n � N)

computed, e.g., via proper orthogonal decomposition (POD), such that the solution can
be approximated as x(t,μ) ≈ x̃(t,μ) = x̄(μ) + V x̂(t,μ) ≈ x with x̂ ∈ R

n denoting the
reduced state. Then, the Galerkin ROM can be expressed as

˙̂x = V T f (V x̂, t;μ), (3)

x̂(0) = V Tx0 (μ) . (4)

Critically, note that the ROM is defined by the low-dimensional mapping

fr : (ŷ, τ ; ν) �→ V T f (V ŷ, τ ; ν) (5)

: Rn × R+ × R
p → R

n. (6)

The reduced velocity fr is thus simply a function that maps the reduced state and inputs
to a low-dimensional vector. Thus, we can rewrite Eq. (3) as

˙̂x = f̂r(x̂, t;μ) (7)
However, this approach is intrusive to implement in computational mechanics codes, as
it requires querying the full-order model code to compute f (V x̂, t;μ) for every instance of
x̂ and μ encountered during the ROM simulation; without hyper-reduction (e.g., DEIM
or gappy POD), it is also computationally expensive, as computing V T f given f incurs
O(Nn) flops. Even if hyper-reduction is present, however, the approach remains intru-
sive, as sampled entries of the velocity must be computed for every instance of x̂ and μ

encountered during the ROM simulation. Depending on the complexity of the system
trajectories, one can choose n to balance the accuracy and computational speedup.

Regression-based reduced operator approximation
This section outlines learning the low dimensional operator through regression methods.
We commence describing the general formulation of the framework in “Mathematical
formulation” section, and then “Surrogate ROM” section discusses the proposed regres-
sion models and their computational complexity. In “Error analysis” section, we derive
the boundedness and stability of of the approximated discrete-time dynamical system.

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 5 of 24

Mathematical formulation

The objective is to develop a data-driven, non-intrusive approximation to the reduced
velocity with reduced-order models of different dynamical systems. fr . In particular, we
aim to devise an approximate mapping

f̂r : Rn × R+ × R
p → R

n. (8)

such that

f̂r(x̂, t;μ) ≈ fr(x̂, t;μ), ∀(x̂, t;μ) ∈ R
n × R+ × R

p. (9)

As the domain and codomain of f̂r exhibit no specialized structure, we can consider
general high-dimensional regression techniques (e.g., kernel regression, random forest
regression).
Similar to Eq. (7), the reduced order model is given by

˙̂x = f̂r(x̂, t;μ), (10)

with the initial condition

x̂(0) = V Tx0 (μ) . (11)

We assume that the sequences of reduced velocity fr can be studied from the Markovian
discrete-time dynamical system

x̂j+1 = g(x̂j ,μ), j = 0, . . . , Nt , (12)

for discrete-time velocity g : R
n × R

p → R
n. If such a reduced velocity exists and

we can compute the operator, the whole time sequence of the reduced states can then
be estimated from Eq. (12) by specifying the initial (reduced) state. By considering the
mapping between the current reduced state and the next, we cast the problem into a set
of regression models.

Surrogate ROM

In this work, we collect the reduced states from the Galerkin projection as in “Galerkin
projection” section and approximate the operator g by regressing each component of the
reduced velocity. To be specific, we construct individual regression ĝi ≈ gi for i = 1, . . . , n,
the ith equation of g is:

x̂j+1
i = ĝi(x̂j ,μ), j = 0, . . . , Nt , i = 1, . . . , n, (13)

where x̂ = [x1 . . . xn] and g = [g1 . . . gn]. Equation (13) shows that we can map the
reduced state at time step x̂n to each component of the state at the next time step x̂j+1

i for
j = 0, . . . , Nt − 1.
In the offline stage, we obtain training data from the existing Galerkin projectionmodel.

By querying both features (x̂j) and responses (x̂j+1
i) at every time instance, we generate a

data set Ttrain,i = (x̂j , x̂j+1
i) for model training and cross validation.

We consider a variety of conventional statistical models, including support vector
regression (SVR) with kernel functions (Gaussian, polynomials) [53], tree-based methods
(boosted decision trees [20], random forest [9]) and k-nearest neighbors [1], for regressing
the feature-response pairs. Three types of kernel functions are explored in SVR. Specif-
ically, we refer to the SVR model using the 2nd, 3rd order polynomial kernel as SVR2,

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 6 of 24

SVR3 respectively. When the Gaussian radial basis function (RBF) kernel is used, we
refer to the model as SVRrbf. In addition, we investigate the vectorial kernel orthogonal
greedy algorithm (VKOGA) and Sparse identification of nonlinear dynamics (SINDy) as
advanced regressionmodels. More details of VKOGA and SINDy can be found in “Special
regressionmodels” section.Wecompare the computational complexity of all the proposed
regressionmodels in “Special regressionmodels’ section’. For all the candidatemodels, we
employ cross validation to optimize the hyperparameters for model selection, aiming for
a balanced bias and variance. We also explore the training and validation error as varying
the number of samples in “Cross-validation and hyperparameter tuning” section, and we
select a fixed sample size for performance comparison between models.
For time integration along the trajectory of the dynamical system, we investigate the

appropriate time step for each regression model. We implement the 4th-order Runge–
Kutta as the explicitmethod, as well asNewton–Raphson and fixed-point iteration both in
backward Euler as the implicit methods. We report the numerical results, with respect to
the Galerkin reduced-order model (ROM) and the full-order model (FOM) as a function
of time in “Numerical experiments” section.

Error analysis

Assuming the considered regression model generates bounded in reduced space, we
examine the boundedness of the surrogate FOM on the time evolution of the states
along the trajectory. Let Jt = [0, T] denote the time domain, Jμ ⊂ R

p be a compact
space of μ, x : Jt → R

n denote the state variable, and f (x, t;μ) be the vector field. Let
fr(ŷ, t;μ) = V T f (V ŷ, t;μ) represent the Galerkin reduced vector field. Let x̂(t) denote an
approximate reduced vector field constructed by amachine learningmethod and f̂r(x̂, t;μ)
be the corresponding vector field.
The error of the reduced model can be defined as e(t) := x̃(t) − x(t). Let P = VV ∗. Let

eo(t) := (In − P)e(t), which denotes the error component orthogonal to range (V), and
ei(t) := Pe(t), which denotes the component of error parallel to range (V). Let x̃ := Px
denote the direct projection of x. Thus, we have

eo(t) = x̃(t) − x(t). (14)

However, since the system is evolutionary with time, further approximations of the
projection-based reduced model result in an additional error ei(t), and we have

ei(t) = V x̂(t) − x̃(t). (15)

Although ei(t) and eo(t) are orthogonal to each other, they are not independent.

Lemma 1 Consider the dynamical system as Eq. (1) over the interval t ∈ J and μ ∈ Jμ.
Suppose f (x, t;μ) is a uniformly Lipschitz function of x with constant K and a continuous
function of t for all (x, t,μ) ∈ Bb(x0) × Jt × Jμ. Suppose f̂r(x̂, t;μ) is a uniformly Lipschitz
function of x̂ and a continuous function of t for all (x, t;μ) ∈ Bb(x0) × Jt × Jμ. Suppose
the data-driven approximation satisfies ‖f̂r(x̂, t;μ)−V ∗f (V x̂, t;μ)‖ ≤ C for all (x̂, t,μ) ∈
Bb(x̂(×0)) × Jt × Jμ. Then the error e(t) = x̂(t) − x(t) in the infinity norm for the interval
Jt is bounded by

‖e‖∞ ≤ eKT ‖eo‖∞ + eKT
∥
∥ei(0)

∥
∥ + C

K
(eKT − 1) (16)

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 7 of 24

Proof For notation simplification, we fix μ and do not explicitly denote it in vector fields.
Substituting Eqs. (1), (10) into the differentiation of eo(t) + ei(t) = V x̂(t) − x(t) yields

ėo + ėi = V f̂r(x̂, t) − f (x, t). (17)

Left multiplying Eq. (17) by P and recognizing that PV = V gives

ėi(t) = V f̂r(x̂, t) − Pf (x, t)

= V f̂r(x̂, t) − Pf (V x̂, t) + Pf (V x̂, t) − Pf (x + eo, t) + Pf (x + eo, t) − Pf (x, t)

= V (f̂r(x̂, t) − V ∗f (V x̂, t)) + P(f (x + eo + ei, t) − f (x + eo, t))

+ P(f (x + eo, t) − f (x, t))

Using this equation by expanding ‖ei(x + h)‖ and applying triangular inequality yields

‖ei(t + h)‖ = ‖ei(t) + hėi(t)‖ + O(h2)

≤ ‖ei(t)‖ + ‖hV (f̂r(x̂, t) − V ∗f (V x̂, t))‖ + ‖hP(f (x + eo + ei, t)

− f (x + eo, t))‖ + ‖hP(f (x + eo, t) − f (x, t))‖ + O(h2)

≤ ‖ei(t)‖ + h‖V ‖ · ‖f̂r(t, x̂) − V ∗f (V x̂, t)‖ + h‖P‖ · ‖f (x + eo + ei, t)

− f (x + eo, t)‖ + h‖P‖ · ‖f (x + eo, t) − f (x, t)‖ + O(h2).

Using ‖V ‖ = ‖P‖ = 1 and ‖f̂r(t, x̂) − V ∗f (t,V x̂)‖ ≤ C , the last inequality gives

‖ei(t + h)‖ ≤ ‖ei(t)‖ + hC + h‖f (x + eo + ei, t) − f (x,+eo, t)‖
+ h‖f (x + eo, t) − f (x, t)‖ + O(h2).

Rearranging this inequality and applying the Lipschitz conditions gives
‖ei(t + h)‖ − ‖ei(t)‖

h
≤ K‖ei(t)‖ + K‖eo(t)‖ + C + O(h).

SinceO(h) can be uniformly bounded independent of ei(t), using the mean value theorem
and letting h → 0 give

d
dt

‖ei(t)‖ ≤ K‖ei(t)‖ + K‖eo(t)‖ + C.

Rewriting the above inequality into integral form,
∥
∥ei(t)

∥
∥ ≤ α(t)+K

∫ t
0 ‖ei(τ)‖dτ , where

α(t) := ∥
∥ei(0)

∥
∥ + K

∫ t
0 ‖eo(τ)‖dτ + Ct, and using Gronwall’s lemma, we obtain

∥
∥ei(t)

∥
∥ ≤ α(t) +

∫ t

0
α(s)K exp

(∫ t

s
Kdτ

)

ds.

Bydefinition,‖eo‖∞ ≥ ∥
∥eo(t)

∥
∥ for any t ∈ Jt . It follows thatα(t) ≤ ∥

∥ei(0)
∥
∥+Kt ‖eo‖∞+Ct.

Simplifying the integral of the right-hand side of the above inequality gives

‖ei(t)‖ ≤ (eKt − 1)
(

‖eo‖∞ + C
K

)

+ eKt‖ei(0)‖,

for any t ∈ Jt . If follows that

‖ei‖∞ ≤ (eKT − 1)
(

‖eo‖∞ + C
K

)

+ eKT‖ei(0)‖,

Combining the above inequality with ‖e‖∞ ≤ ‖ei‖∞ + ‖eo‖∞, one can obtain Eq. (16). ��
Remark The above lemma provides a bound for ‖ei(t)‖ in terms of ‖eo‖∞ and ‖ei(0)‖.We
have

∥
∥ei(0)

∥
∥ = 0 when the initial condition of the reduced model is given by x̂(0) = V ∗x0

for Eq. (10). In this situation, Eq. (16) becomes ‖e‖∞ ≤ eKT‖eo‖∞ + C
K (eKT − 1).

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 8 of 24

Numerical experiments
To assess the proposed non-intrusive ROM, we consider two parameterized PDEs: (i) 1D
inviscid Burgers’ equation, and (ii) 2D convection–diffusion equation. We implement
explicit integrator, including 4th-order Runge–Kutta solvers, and Newton–Raphson,
fixed-point iteration in backward Euler as the implicit methods.

1D Burgers’ equation

The experiment first employs a 1D parameterized inviscid Burgers’ equation. The input
parameters μ = (a, b) in the space [1.5, 2] × [0.02, 0.025]. In the current setup, the
parameters for online test are fixed to be μ = (1.8, 0.0232). In the FOM, the prob-
lem is often solved using a conservative finite-volume formulation and Backward Euler
in time. The 1D domain is discretized using a grid with 501 nodes, corresponding to
x = i × (100/500), i = 0, . . . , 500. The solution u(x, t) is computed in the time inter-
val t ∈ [0, 25] using different time step sizes considering the convergence in each time
integrator.

∂u(x, t)
∂t

+ 1
2

∂(u2(x, t))
∂x

= 0.02ebx, (18a)

u(0, t) = a,∀t > 0, (18b)

u(x, 0) = 1,∀x ∈ [0, 100]. (18c)

The solution u(x, t) is computed in the time interval t ∈ [0, 25] using a uniform computa-
tional time-step size Δt.

Data collection

We investigate time step verification on choosing an appropriateΔt of the time integrator
for the problem. We collect the solutions under an increasing number of time stepsNt =
[25, 50, 100, 200, 400, 800, 1600, 3200, 6400] using both Runge–Kutta as well as backward
Euler integrator. Throughout the paper, we select the time step at 99% of the asymptotic
rate of convergence. The verification results in Fig. 1 show that Nt = 200 is a reasonable
number of time steps to use for the 4th-order Runge–Kutta and Nt = 800 for backward
Euler method. During the offline stage, we run four full simulations corresponding to
the corner parameters of the space [1.5, 2] × [0.02, 0.025]. Then, we sample the training
data from Latin-hypercube. In the sampling,Ntraining andNvalidation instances of the state,
time and parameters are generated following the criterion that the minimum distances
between the data points aremaximized. For this study, the default size of the training set is
Ntraining = 1000 and the default size of the validation set isNvalidation = 500. The reduced
vector field fr is computed for each input pairs (x̂, t;μ). Note that both the training and
validation stage only involves pure machine learning. Then in the test stage, we evaluate
the proposed ROM. The parameters are fixed to be μ = (1.8, 0.0232) for testing purpose.

Model validation

We use SVR with kernel functions (2nd, 3rd order polynomials and radial basis function),
kNN, Random Forest, Boosting, VKOGA, and SINDy as regression models to approxi-
mate reduced velocity. In particular, for each regression method, we change the model
hyperparameters and plot the relative training error and validation error. The relative

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 9 of 24

Fig. 1 Timestep verification for 1D inviscid Burgers’ equation: a backward-Euler integrator: we select a time
step of 3.12e-2, as it leads to an approximated convergence rate of 1 and an approximated error of 4e-4 for
the selected state; b Runge–Kutta: we select a time step of 1.25e-1, as it leads to an approximated (< 1%
error) convergence rate of 4 and an averaged approximated error of 6e-5 for the selected state

error (continuous-time model) is defined by

err = ‖f̂r(x̂, t;μ) − fr(x̂, t;μ)‖
‖fr(x̂, t;μ)‖ . (19)

We then plot the learning curve of each regressionmethod and compare the performance
of each model on training and validation data over a varying number of training instances
in “Cross-validation and hyperparameter tuning” section. By properly choosing the hyper-
parameters and the number of training instances, our regression models can effectively
balance bias and variance.

Simulation of the surrogate ROM

We can now solve the problem using the surrogate model along the trajectory of the
dynamical system. After applying time integration to the regression-based ROM,we com-
pute the relative error of the proposed models as a function of time. We investigate both
Newton–Raphson, fixed-point iteration in backward Euler and 4th-order Runge–Kutta
in explicit methods. Let x(t), x̂b(t) and x̂(t) denote the solution of the FOM, the Galerkin
ROM, and non-intrusive ROMs respectively. We define the relative error with respect to
FOM eFOM(t) and Galerkin ROM eROM(t) as

eFOM(t) = ‖(V x̂(t) − x(t))‖
‖x(t)‖ , (20)

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 10 of 24

Fig. 2 Backward Euler for 1D inviscid Burgers’ equation: time evolution of relative error: a eFOM(t) in FOM; and
b eROM(t) in ROM

Fig. 3 Pareto frontier of relative error with respect to the relative running time using backward Euler for 1D
inviscid Burgers’ equation: a eFOM vs. τFOM in FOM; b eROM vs. τROM in ROM

eROM(t) = ‖(x̂(t) − x̂b(t))‖
‖x̂b(t)‖ . (21)

The corresponding averaged relative error over the entire time domain eFOM and eROM
can be computed as

eFOM = 1
T

∫ T

t=0
eFOM(t)dt, (22)

eROM = 1
T

∫ T

t=0
eROM(t)dt. (23)

Let tFOM , tROM , and τ denote the running time of FOM,Galerkin ROM, and non-intrusive
ROM respectively. Define the relative running time with respect to the FOM and the
Galerkin ROM:

τFOM = τ

tFOM
, (24)

and

τROM = τ

tROM
. (25)

The following are the simulation results from backward Euler method with Nt = 800.
Figure 2 plots the state-space error with respect to the FOMandROMusing the backward

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 11 of 24

Table 1 Comparison of different machine learning methods using backward Euler methods for 1D
inviscid Burgers’ equation: Newton’s method (N); fixed-point iteration (FP)

Method Online running time (s) R Err (w.r.t. FOM) R Err (w.r.t. Galerkin)

SVR 2 FP 93.365 0.0346 1.62e−4

SVR 2 N 53.772 0.0346 1.62e−4

SVR 3 FP 102.873 0.0346 1.02e−5

SVR 3 N 78.935 0.0346 1.02e−5

SVR rbf FP 104.349 0.0353 8.12e−3

SVR rbf N 104.548 0.0353 8.12e−3

Random Forest 374.201 0.0756 0.0638

Boosting 587.473 0.0980 0.0873

kNN 1.108 0.0558 0.0427

VKOGA FP 2.505 0.0365 0.0122

VKOGA N 1.217 0.0365 0.0122

SINDy FP 0.534 0.0346 4.36e−5

SINDy N 0.373 0.0346 4.36e−5

Galerkin 0.942 0.0346 0

The running time of FOM and Galerkin is 3.886s and 0.942s respectively
Bold values indicate the models selected with smallest online running time, or relative error w.r.t. FOM and/or ROM

Euler integrator. As validation results predict, SVR3 and SINDy behave better than the
other models, achieving a relative ROM error below 1e-4 over the entire time domain,
and the relative error in terms of FOM is well bounded. Figure 3 plots the Pareto frontier
error as a function of the relative running time using the backward Euler integrator. For
differential models, the relative time is calculated using the less expensive approach, i.e.
Newton’s method. By comparison, SINDy requires much less relative time than SVR3,
at a comparable level of relative error in both FOM and ROM. Table 1 summarizes (i)
online running time of all methods, (ii) mean time-integrated error with respect to the
FOM, and (iii) mean time-integrated error with respect to ROMs using the backward
Euler integrator. For differentiable models, we compare the computational time of both
Newton’s method and fixed point iteration in backward Euler. For those models that are
non-differentiable, i.e. random forest, boosting and kNN, only the running time of the
fixed-point iteration method is reported. All the ROM and FOM solutions are computed
at the verified backward Euler time step Δt = 3.12e-2. Note that the non-intrusive ROM,
e.g. SINDy with Newton’s method can accelerate the solver by 10.4× relative to the
FOM and 2.5× compared to the Galerkin ROM at a relative error of 0.0346 and 4.36e-5
respectively.
We examine simulation results from 4th-order Runge–Kutta method with Nt = 200.

Figure 4 shows the state-space error with respect to the FOM and ROMusing the Runge–
Kutta integrator. SVR2, SVR3 and SINDy have a comparable performance, and result in a
bigger ROM error relative to the backward Euler solver.We notice that the random forest
model begins to diverge after t > 10 in the explicit scheme. This can be explained by the
corresponding performance in model evaluation in “Special regression models” section.
Figure 5 plots the Pareto frontier error with respect to the relative running time using
the backward Euler integrator. VKOGA has the smallest relative time in both the FOM
and ROM comparison. SINDy requires slightly more running time while the accuracy
outperforms VKOGA. Table 2 shows the online running time of all methods, the mean
time-integrated error with respect to the FOM, and the mean time-integrated error with

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 12 of 24

Fig. 4 Runge–Kutta for 1D inviscid Burgers’ equation: time evolution of relative error: a eFOM(t) in FOM; and b
eROM(t) in ROM

Fig. 5 Pareto frontier of relative error with respect to the relative running time using 4th-order Runge–Kutta
for 1D inviscid Burgers’ equation: a eFOM vs. τFOM in FOM; b eROM vs. τROM in ROM

Table 2 Comparison of different machine learning methods using 4th-order Runge–Kutta for 1D
inviscid Burgers’ equation

Method Online running time (s) R Err (w.r.t. FOM) R Err (w.r.t. Galerkin)

SVR 2 1.854 0.0309 2.42e−3

SVR 3 1.744 0.0310 2.42e−3

SVR rbf 1.773 0.0321 5.03e−3

Random Forest 6.513 0.0817 0.0726

Boosting 10.076 0.0904 0.0858

kNN 0.244 0.0467 0.0336

VKOGA 0.058 0.0353 0.0164

SINDy 0.063 0.0310 2.42e−3

Galerkin 0.194 0.0304 0

The running time of FOM and Galerkin is 0.401s and 0.194s respectively
Bold values indicate the models selected with smallest online running time, or relative error w.r.t. FOM and/or ROM

respect to the Galerkin ROM using the Runge–Kutta solver. For a fair comparison, all the
ROM and FOM solutions are computed at the verified Runge–Kutta time step as selected
in Fig. 1b. The results show that SVR basedmodels, e.g. SVR2 and SVR3, yield the smallest
relative errors, however the computational cost is more expensive than the FOM. Note

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 13 of 24

Fig. 6 Solution profile of 2D convection–diffusion equation, u(x, y, t = 2) with input parameter
μ1 = μ2 = 9.5

that the non-intrusive ROM (VKOGA) can speed up the solver by 6.9× relative to the
FOMand3.3×over theGalerkinROMat a relative error of 0.0353 and 0.0164 respectively.

2D convection–diffusion

Weconsider a 2D parametric nonlinear heat equation. Given a state variable u = u(x, y, t),
the governing equation is described as

∂u(x, y, t)
∂t

= −μ0 �2 u − μ0μ1
μ2

(eμ2u − 1) + cos(2πx) cos(2πy), (26a)

u(x, y, 0) = 0. (26b)

The parameters are given by μ0 = 0.01, and (μ1,μ2) ∈ [9, 10]2. The spatial domain is
[0, 1]2 and Dirichlet boundary conditions are applied. The FOM uses a finite difference
discretization with 51 × 51 grid points. The full time domain is [0, 2] and we evaluate
both the backward Euler and Runge–Kutta methods for time integration with uniform
time steps. Figure 6 shows the solution profile at t = 2 with input parameter (μ1,μ2) =
(9.5, 9.5).

Data collection

Similar to the 1D case, first we investigate the appropriate time step Δt for solv-
ing the ODE. We collect the solutions of a sequence number of time steps Nt =
[25, 50, 100, 200, 400, 800, 1600, 3200, 6400] for (i) explicit Runge–Kutta and (ii) implicit
backward-Euler integrator. The verification results in Fig. 7 shows that Nt = 200 is a
reasonable number of time steps to use for Runge–Kutta and Nt = 800 for backward
Euler method. During the offline stage, we run four full simulations corresponding to
the corner parameters of the space [9, 10]2. Then, the training data are sampled from a
Latin-hypercube for better covering the parameter space. In the sampling, Ntraining and
Nvalidation instances of the state, time and parameters are generated following the criterion
that the minimum distances between the data points are maximized. We use the default
size of the training set Ntraining = 1000 and of the validation set Nvalidation = 500. Then
the reduced vector field fr is computed for each input pairs (x̂, t;μ). In the training and

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 14 of 24

Fig. 7 Timestep verification for 2D convection–diffusion equation: a backward Euler integrator: we select a
time step of 3.12e-2, as it leads to an approximated convergence rate of 1 and an approximated error of 5e-4
for the selected state; b Runge–Kutta: we select a time step of 1.25e-1, as it leads to an approximated
convergence rate of 4 and an averaged approximated error of 2e-5 for the selected state

validation stage, we regress the reduced vector field fr by the input (x̂, t;μ); in the test
stage, we evaluate the ROM. The parameters are fixed to be (μ1,μ2) = (9.5, 9.5).

Model validation

Wereport the performanceof SVR (2nd, 3rdpoly and rbf), kNN,RandomForest, Boosting,
VKOGA, and SINDy as regression models to approximate reduced velocity. In particu-
lar, as in “Model validation” section, for each regression method, we change the model
hyperparameters and plot the relative training and validation error. The relative error is
defined by Eq. (19). Similarly, we plot the learning curve of each regression method and
compare the performance of each model on training and validation data over a varying
number of training instances in “Cross-validation and hyperparameter tuning” section.
We aim to balance bias and variance in each regression model, by properly choosing
hyperparameters and the number of training instances.

Simulation of the surrogate ROM

We can now solve this 2D problem using the surrogate model along the trajectory of
the dynamical system. After applying time integration to the regression-based ROM, we
compute the relative error of the proposedmodels as a function of time. As in “Simulation
of the surrogate ROM” section, we investigate both the backward Euler and Runge–Kutta
integrators. The following are the simulation results from backward Euler method with

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 15 of 24

Fig. 8 Backward Euler for 2D convection–diffusion equation: time evolution of relative error: a eFOM(t) in
FOM; and b eROM(t) in ROM

Fig. 9 Pareto frontier of relative error with respect to the relative running time using backward Euler for 2D
convection–diffusion equation: a eFOM vs. τFOM in FOM; b eROM vs. τROM in ROM

Nt = 800. Figure 8 plots the state-space error with respect to FOM and ROM using the
backward Euler integrator. VKOGA outperforms the other models, achieving a relative
ROMerror below 6e-2 over the entire time domain, and the accuracy is closest toGalerkin
ROM.
Figure 9 plots the Pareto frontier error as a function of the relative running time using

the backward Euler integrator. VKOGA performs best in terms of both accuracy and time
efficiency, when comparing with the Galerkin ROM.
Table 3 presents the online running time of all methods, themean time-integrated error

with respect to FOM, and the mean time-integrated error with respect to the Galerkin
ROM using the backward Euler integrator for the 2D convection–diffusion equation. To
compare, all the ROM and FOM solutions are computed at the verified backward Euler
time step. Note that the non-intrusive ROM, e.g. VKOGA with Newton’s method, can
improve the solve time by three orders of magnitude over the FOM and 111.2× compared
to the Galerkin ROM at a relative error of 0.0059 and 0.0041 respectively.
We examine the simulation results from the 4th-order Runge–Kutta method with

Nt = 200. Figure 10 shows the state-space error with respect to FOM and ROM using
the Runge–Kutta integrator. SVR2, SVR3, VKOGA, and SINDy have a comparable per-
formance, and result in a smaller ROM error relative to in the backward Euler solver. We

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 16 of 24

Table 3 Comparison of different machine learning methods using the Backward Euler integrator for
2D convection–diffusion equation: Newton’s method (N); FP-fixed-point iteration (FP)

Method Online running time (s) R Err (w.r.t. FOM) R Err (w.r.t. Galerkin)

SVR 2 FP 13.510 0.0074 0.0061

SVR 2 N 10.510 0.0074 0.0061

SVR 3 FP 13.873 0.0045 0.0028

SVR 3 N 10.135 0.0045 0.0028

SVR rbf FP 13.349 0.0181 0.0169

SVR rbf N 10.405 0.0181 0.0169

Random Forest 120.674 0.0332 0.0326

Boosting 190.632 0.0147 0.0135

kNN 0.435 0.0149 0.0142

VKOGA FP 2.505 0.0059 0.0041

VKOGA N 0.151 0.0059 0.0041

SINDy FP 0.534 0.0066 0.0054

SINDy N 0.236 0.0066 0.0054

Galerkin 0.942 0.0029 0

The running time of FOM and Galerkin is 209.393s and 16.837s respectively
Bold values indicate the models selected with smallest online running time, or relative error w.r.t. FOM and/or ROM

Fig. 10 Runge–Kutta for 2D convection–diffusion equation: time evolution of relative error: a eFOM(t) in FOM;
and b eROM(t) in ROM

Fig. 11 Pareto frontier of relative error with respect to the relative running time using 4th-order
Runge–Kutta for 2D convection–diffusion equation: a eFOM vs. τFOM in FOM; b eROM vs. τROM in ROM

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 17 of 24

Table 4 Comparison of different machine learning methods using 4th-order Runge–Kutta for 2D
convection–diffusion equation

Method Online running time (s) R Err (w.r.t. FOM) R Err (w.r.t. Galerkin)

SVR 2 1.850 0.0087 0.0076

SVR 3 1.740 0.0065 0.0052

SVR rbf 1.777 0.0185 0.0174

Random Forest 20.313 0.0426 0.0419

Boosting 32.668 0.0177 0.0166

kNN 0.175 0.0153 0.0146

VKOGA 0.041 0.0083 0.0069

SINDy 0.055 0.0077 0.0066

Galerkin 19.012 0.0029 0

The running time of FOM and Galerkin is 138.319s and 19.012s respectively
Bold values indicate the models selected with smallest online running time, or relative error w.r.t. FOM and/or ROM

notice that the random forest, boosting models and kNN begin to diverge quickly in the
second half of the time domain. Figure 11 plots the Pareto frontier error as a function
of the relative running time using the backward Euler integrator. VKOGA and SINDy
outperform the other models in terms of both computation accuracy and time cost. The
relative error compared to Galerkin ROMand FOM is below 1e-2. Table 4 includes online
running time of all methods, themean time-integrated error with respect to the FOM, and
themean time-integrated error with respect to the Galerkin ROMusing the Runge–Kutta
integrator for the 2D convection–diffusion equation. In the comparison, all the ROM
and FOM solutions are computed at the verified backward Euler time step. We observe
that the computational efficiency of the non-intrusive ROM performs significantly better
than Galerkin ROM. VKOGA using Runge–Kutta can speed up the solver 3406.9× that
of the FOM and 468.3× that of the Galerkin ROM at a relative error of 0.0083 and 0.0069.
SINDy using Runge–Kutta can accelerate the solver 2524.1× over the FOM and 347.0×
compared to the Galerkin ROM at a relative error of 0.0077 and 0.0066 respectively.

Conclusions
In this study, we demonstrate the effectiveness of a data-driven model reduction method
for solving two types of parametric PDEs non-intrusively, in both explicit and implicit
time integration schemes. The approach successfully avoids the cost and intrusiveness of
querying the full-ordermodel and reduced-ordermodel in the simulation, by approximat-
ing low-dimensional operators using regression methods. In the offline stage, we train the
regression models using state-of-the art techniques from machine learning and specific
dynamical learning methods in a reduced order architecture; in the online stage, the sur-
rogate ROM then solves problemsmore efficiently (orders ofmagnitude in speedup) using
the learned reduced operators. The proposed approach speeds up the full-order model
simulation by one order ofmagnitude in the 1DBurgers’ equation and three order ofmag-
nitude in the 2D convection–diffusion equation. Among the machine learning models we
evaluate, VKOGA and SINDy distinguish themselves from the other models, delivering
superior cost vs. error trade-off.
Further work involves a number of important extensions and directions that arise out of

this work. First, it will be interesting to investigate the effectiveness on solving a different
types of PDE or a more complex nonlinear dynamical systems, e.g. Euler’s equation.

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 18 of 24

Morerover, for nonlinear Lagrangian dynamical systems, we need to develop structure-
preserving approximations for all reduced Lagrangian ingredients in themodel reduction.
Rather than apply a Galerkin projection to obtain the ROM, one can alternatively employ
a least-square Petrov–Galerkin (LSPG) [14,15,17], which requires a regression method
predictingnon-negative values. Analyzingmodels on anonlinearmanifold is an important
area of future work, where we can go beyond the linear spaces, andmappings between the
original full-order space RN and the reduced-order subspace Rn in Galerkin projection.
The growing intersection of dynamical systems and data science are driving innovations in
estimating the prediction of complex systems [10].With a deeper understanding of neural
networks, it may be possible to generalize the non-intrusive approach to another level of
accuracy. Furthermore, physics-informed models [45] may accelerate learning from data
and add interpretability to existing approaches.This framework can also be combinedwith
distributed systems to enable parallelism for extreme-scale high performance computing.

Acknowledgements
We would like to thank Kevin Carlberg, Steve Brunton and Youngsoo Choi for valuable discussions. ZB acknowledges
support by the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231. ZB and LP
acknowledge support for preliminary work from Sandia National Laboratories. Any subjective views or opinions that
might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Data availibility statement
Data can be generated by the examples of the PDEs and will be available on reasonable request.

Declarations

Competing interests
The authors declare that they have no conflict of interest.

Author details
1Computational Research, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA, 2Facebook AI Applied Research,
Menlo Park, CA 94025, USA.

Appendix A: Regressionmodels and tuning
Special regression models

In this section, we detail two non-transitional machine learning models, VKOGA and
SINDy, in addition to the SVR, kNN, random forest and boosting.

Vectorial kernel orthogonal greedy algorithm (VKOGA)

Developed from kernel-based methods, VKOGA makes the assumption that a common
subspace can be used for every component of vector-valued response. With such, it sig-
nificantly reduces the training and evaluation time when the number of kernels in the
resulting regression model is large. VKOGA constructs the regression model

h(x) =
nVKOGA∑

i=1
αiK (xi, x), (27)

where K : RNx × R
Nx → R denotes a kernel function, for each individual regression

model hi, i = 1, . . . , Nx, and αi ∈ R
xx , i = 1, . . . , Nx are vector-valued basis functions.

VKOGA uses a greedy algorithm to compute kernel functions K (x̄, ·). The greedy algo-
rithm determines kernel centers fromΩ = x̄1, . . . , x̄ntrain . Let the initial stateΩ0 = ∅, and

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 19 of 24

then at stagem, choose

xm = argmax
x∈Ω\Ωm−1

|〈h,φm−1
x 〉|, (28)

where φm−1
x denotes the orthogonal remainder of K (x, ·) with respect to the reproduc-

ing kernel Hilbert space spanned by K (x1, ·), . . . , K (xm−1, ·). Then the kernel centers are
updated Ωm = Ωm−1 ∪ xm. At the next step, the basis function αi, i = 1, · · · , nVKOGA
are determined by a least-squares approximation to fit the training data. In the numerical
experiments, we apply the Gaussian RBF kernel K (x̄i, x̄j) = exp(−γ ‖x̄i, x̄j‖), where the
hyperparameter is the number of kernel functions used.

Sparse identification of nonlinear dynamics (SINDy)

The sparse identification of nonlinear dynamics (SINDy)method [12] identifies nonlinear
dynamical system from measurement data, seeking to approximate the vector field f by
a generalized linear model. This architecture avoids overfitting by identifying a parsimo-
nious model, which is more explainable or predictable than black-box machine learning.
Although SINDy was originally devised for continuous-time dynamics, it can be extended
to discrete-time systems. In particular, SINDy yields a model

h(x, θ) =
nSINDy
∑

i=1
pi(x)θi, (29)

where pi : RNx → R, i = 1, . . . , nSINDy denotes a “library” of candidate basis functions.
The relevant terms that are active in the dynamics are solved using sparse regression that
penalizes the number of functions in the library P(x):

θi = argmin
θ′
i

‖h − P(x)θ′
i‖2 + α‖θ′

i‖1, (30)

where ‖ · ‖1 promotes sparsity in the coefficient vector θi and the parameter α balances
low model complexity with accuracy. The least absolute shrinkage and selection operator
(LASSO) [55] or the sequential threshold least-squares (STLS) [12] can be used to deter-
mine a sparse set of coefficients (θ1, . . . , θnSINDy). In thenumerical experiments,we consider
linear and quadratic functions in the library, i.e., pi ∈ {x1, . . . , xNx , x1x1, x1x2, . . . , xNxxNx }.
Hyperparameters in this approach consist of the prescribed basis functions.
Table 5 summarizes the computational complexities of all the considered regression

models. Note that the hyperparameter varies in different models, i.e. Ntrees denotes the
number of decision tress in random forest, Nlearners denotes the number of weak learners
in the boostingmethod,Nfunctions is the numner of kernel functions inVKOGA, andNbases
represents the number of bases in SINDy with 2nd order polynomials.

Cross-validation and hyperparameter tuning

For each regression model proposed in “Surrogate ROM” section, we use cross-validation
to prevent overfitting and select hyperparameters.
We report the hyperparameter selection of eachmodel for the 2D convection–diffusion

equation in Fig. 12. In Fig. 12a, it shows that with the sensitivity margin ε ≤ 0.1, both the
training error and validation errors are very small, and thuswe select the sensitivitymargin
ε = 0.1 for SVR2. Similarly, ε = 10−3 is selected for SVRrbf. Figure 12d shows that within
40 trees, the validation error of the random forest model is still relatively large. Moreover,

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 20 of 24

Table 5 Theoretical complexity per time step, where n represents the subspace dimension, p
represents the parameter dimension, and Ntraining represents the number of training points

Method Complexity Comments

SVR 2 O((n + p)nNtraining)

SVR 3 O((n + p)nNtraining)

SVR rbf O((n + p)nNtraining)

Random Forest O(nNtreesNtraining log(Ntraining)) Ntrees: number of decision trees

Boosting O(nNlearners) Nlearners: number of weak learners

kNN O((n + p)nNtraining + KnNtraining) K : number of nearest neighbors

VKOGA O((n + p)Nfunctions) Nfunctions: number of kernel functions

SINDy2 O(nNbases) Nbases: number of bases, Nbases < n2

Fig. 12 Hyperparameter selection for all considered regression models. Relative mean squared errors are
reported: a SVR2, b SVR3, c SVR rbf, d random forest, e boosting, f kNN, g VKOGA. The training and validation
set correspond to the default size: Ntraining = 1000 and Nvalidation = 500. Blue curves represent training errors
and red curves represent validation errors

there is a big gap between the training error and test error that implies the random
forest model may suffer from overfitting for the given data. We select Ntrees = 15 in this
study. As shown in Fig. 12e, the validation error in Boosting approaches the minimum
at Nlearners = 40, and thus we select 40 weak learners. Figure 12f shows that by choosing
the number of neighbors K ≈ 4, the validation error is minimized. Thus, K = 4 is a
good hyperparameter to balance bias and variance. In Fig. 12g we observe that the more
kernel functions we use, the smaller value of training and validation error we obtain. In
this study, we select 500 kernel functions in VKOGA.
We examine the performance of the models as an increasing size of the training sample

in Fig. 13. Figure 13a shows that with 200 training instances, the SVR2 model has very
small validation error, while SVR3 model requires a bigger training set. For SVRrbf, the
more training instances we have, the smaller validation error we obtain. This is because
the resolution of the radial basis function is determined by the density of input parameter
space. Figure 13d shows that themore data are input, the less the relative error. Intuitively,
more data give higher density in the input parameters space; and thus each leaf of a
decision tree provides finer coverage for test data. Similarly, for the kNN model as in
Fig. 13f, close neighbors give better representation of test data. As a result, more data

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 21 of 24

101 102 103

Number of samples

10-30

10-25

10-20

10-15

10-10

10-5

100

R
el

at
iv

e
er

ro
r

SINDy

Training
Validation

101 102 103 104

Number of samples

10-6

10-5

10-4

10-3

10-2

R
el

at
iv

e
er

ro
r

VKOGA

Training
Validation

101 102 103 104

Number of samples

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r

Boosting

Training
Validation

101 102 103 104

Number of samples

10-4

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r

kNN

Training
Validation

101 102 103

Number of samples

10-3

10-2

10-1

100

R
el

at
iv

e
er

ro
r

Random Forest

Training
Validation

101 102 103 104

Number of samples

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r

SVRrbf

Training
Validation

101 102 103 104

Number of samples

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r

SVR3

Training
Validation

101 102 103 104

Number of samples

10-4

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r

SVR2

Training
Validation

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

R
el

at
iv

e
M

S
E

(a) (b) (c) (d)

(e) (f) (g) (h)

SVR 2 SVR 3 SVR rbf Random forest

Boosting KNN VKOGA SINDy

Number of samplesNumber of samplesNumber of samplesNumber of samples

Number of samplesNumber of samplesNumber of samplesNumber of samples

Fig. 13 Relative mean squared error vs. training size: a SVR2, ε = 10−4, b SVR3, ε = 10−4, c SVR rbf,
ε = 10−4, d random forest, e boosting, f kNN, g VKOGA. Note that the validation set is fixed, Nvalidation = 500.
Blue curves represent training errors and red curves represent validation errors

SVR2 SVR3 SVRrbf RF Boosting kNN VKOGA Sindy
10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
no

rm
 e

rr
or

Training
Validation

(a)

SVR2 SVR3 SVRrbf RF Boosting kNN VKOGA Sindy
10-6

10-5

10-4

10-3

10-2

R
el

at
iv

e
no

rm
 e

rr
or

Training
Validation

(b)

Fig. 14 Relative errors with Ntraining = 1000 and Nvalidation = 500: a 1D Burgers’ equation; and b 2D
convection–diffusion equation. Blue bars represent training errors and red bars represent validation errors

can effectively reduce the variance and solve the overfitting issue. Figure 13e shows that
with approximately 1000 training samples, the training error and validation error begin to
approach 2e-3. This implies that a relative large number of data are required in order to
constrain the variance of the boosting method. Figure 13g shows that with 1000 training
instances, the training and validation errors begin to converge for VKOGA, while SINDy
(2nd order polynomials) only requires a small number of training instances to get a very
accurate prediction, as seen in Fig. 13h. Similarly, we select the following hyperparameters:
ε = 10−4 for SVR2, ε = 10−5 for SVR3, ε = 10−3 for SVRrbf, Ntrees = 15 for random
forest, Nlearners = 40 for boosting, K = 6 for k-nearest neighbours, and 500 kernel
functions for VKOGA in the 1D Burgers’ implementation.
Figure 14 summarizes the overall performance of the above models for the 1D Burgers’

and 2D convection–diffusion equation. All the proposed models are validated using the

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 22 of 24

selected hyperparameters. We notice that SVR with the kernel of 3rd order polynomials
outperforms the other models for the 1D Burgers’ equation. This can be related to the
discretization structure of quadratic nonlinearties in the PDE solver. VKOGA has the a
better reperformance than RF, Boosting, kNN, with a relative error less than 1e-4. SINDy
reaches a relative error of 3e-8. For the 2D convection–diffusion problem, SVR models
again perform better than RF, Boosting and kNN, and SVR3 outperforms the other two
kernel functions. VKOGA has the best accuracy with relative error ≈ 1e-5, while SINDy
reaches a relative error of 1e-3. Note that to be consistent, we select fixed training and
validation sample sizes for all the considered regressionmodels. However, as illustrated in
Fig. 13h, SINDy can approach the same level of accuracy with a small number of training
and validation samples.

Received: 28 September 2021 Accepted: 10 December 2021

References
1. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
2. AmsallemD, Cortial J, Carlberg K, Farhat C. Amethod for interpolatingonmanifolds structural dynamics reduced-order

models. Int J Numer Methods Eng. 2009;80(9):1241–58.
3. Aubry N, Holmes P, Lumley JL, Stone E. The dynamics of coherent structures in thewall region of a turbulent boundary

layer. J Fluid Mech. 1988;192:115–73.
4. Bai Z, Kaiser E, Proctor JL, Kutz JN, Brunton SL. Dynamic mode decomposition for compressive system identification.

AIAA J. 2020;58(2):561–74.
5. Barrault M,Maday Y, NguyenNC, Patera AT. An ‘empirical interpolation’method: application to efficient reduced-basis

discretization of partial differential equations. C R Math. 2004;339(9):667–72.
6. Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev

Fluid Mech. 1993;25(1):539–75.
7. Billings SA. Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains.

Hoboken: Wiley; 2013.
8. Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Nat Acad Sci.

2007;104(24):9943–8.
9. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
10. Brunton SL, Kutz JN. Data-driven science and engineering: machine learning, dynamical systems, and control. Cam-

bridge: Cambridge University Press; 2019.
11. Brunton SL, Noack BR. Closed-loop turbulence control: progress and challenges. Appl Mech Rev. 2015;67:050801-1-

050801–48.
12. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear

dynamical systems. Proc Nat Acad Sci. 2016;113(15):3932–7.
13. Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN. Chaos as an intermittently forced linear system. Nat Commun.

2017;8(19):1–9.
14. Carlberg K, Farhat C, Bou-Mosleh C. Efficient nonlinear model reduction via a least-squares Petrov-Galerkin projection

and compressive tensor approximations. Int J Numer Methods Eng. 2011;86(2):155–81.
15. Carlberg K, Farhat C, Cortial J, AmsallemD. The gnatmethod for nonlinearmodel reduction: effective implementation

and application to computational fluid dynamics and turbulent flows. J Comput Phys. 2013;242:623–47.
16. Carlberg K, Tuminaro R, Boggs P. Preserving lagrangian structure in nonlinear model reduction with application to

structural dynamics. SIAM J Sci Comput. 2015;37(2):B153–84.
17. Carlberg K, Barone M, Antil H. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. J

Comput Phys. 2017;330:693–734.
18. Carlberg KT, Jameson A, KochenderferMJ, Morton J, Peng L,Witherden FD. Recoveringmissing cfd data for high-order

discretizations using deep neural networks and dynamics learning. J Comput Phys. 2019;395:105–24.
19. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput.

2010;32(5):2737–64.
20. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed.

Berlin: Springer; 2009.
21. Hernandez Q, Badias A, Gonzalez D, Chinesta F, Cueto E. Deep learning of thermodynamics-aware reduced-order

models from data. Comput Methods Appl Mech Eng. 2021;379:113763.
22. Hesthaven J, Ubbiali S. Non-intrusive reduced ordermodeling of nonlinear problems using neural networks. J Comput

Phys. 2018;363:55–78.
23. Holmes PJ, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge

monographs in mechanics. Cambridge: Cambridge University Press; 1996.
24. Juang JN. Applied system identification. Upper Saddle River: Prentice Hall PTR; 1994.
25. Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter identification and model reduction.

J Guid Control Dyn. 1985;8(5):620–7.
26. Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Daviller G, Osth J, Krajnovic S, Niven RK. Cluster-based

reduced-order modelling of a mixing layer. J Fluid Mech. 2014;754:365–414.

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 23 of 24

27. Kani JN, Elsheikh AH. Dr-rnn: a deep residual recurrent neural network for model reduction. 2017. arXiv:1709.00939.
28. Kukreja SL, Brenner MJ. Nonlinear system identification of aeroelastic systems: a structure-detection approach. In:

Identification and control. Springer;2007:117–45.
29. Kutz JN. Deep learning in fluid dynamics. J Fluid Mech. 2017;814:1–4.
30. Kutz JN, Brunton SL, Brunton BW, Proctor JL. Dynamic mode decomposition: data-driven modeling of complex

systems. Philadelphia: SIAM; 2016.
31. Lee M, Malaya N, Moser RD. Petascale direct numerical simulation of turbulent channel flow on up to 786k cores. In:

Proceedings of SC13: International conference for high performance computing, networking, storage and analysis,
ACM, 2013. p. 61.

32. Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using deep neural networks with embed-
ded invariance. J Fluid Mech. 2016;807:155–66.

33. Ljung L. System identification: theory for the user. Hoboken: Prentice Hall; 1999.
34. Loiseau JC, Brunton SL. Constrained sparse Galerkin regression. J Fluid Mech. 2018;838:42–67.
35. Loiseau JC, Noack BR, Brunton SL. Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J

Fluid Mech. 2018;844:459–90.
36. Mezić I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005;41(1–

3):309–25.
37. Milano M, Koumoutsakos P. Neural network modeling for near wall turbulent flow. J Comput Phys. 2002;182(1):1–26.
38. Nelles O. Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Berlin:

Springer Science & Business Media; 2013.
39. Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F. A hierarchy of low-dimensional models for the transient and

post-transient cylinder wake. J Fluid Mech. 2003;497:335–63.
40. Pan S, Duraisamy K. Long-time predictive modeling of nonlinear dynamical systems using neural networks. Complex-

ity. 2018. https://doi.org/10.1155/2018/4801012.
41. Peherstorfer B, Willcox K. Data-driven operator inference for nonintrusive projection-basedmodel reduction. Comput

Methods Appl Mech Eng. 2016;306:196–215.
42. Qin T, Wu K, Xiu D. Data driven governing equations approximation using deep neural networks. J Comput Phys.

2019;395:620–35.
43. Raissi M, Karniadakis GE. Machine learning of linear differential equations using gaussian processes. 2017. arXiv

preprint arXiv:1701.02440.
44. RaissiM, Karniadakis GE. Hiddenphysicsmodels:machine learningof nonlinear partial differential equations. J Comput

Phys. 2018;357:125–41.
45. Raissi M, Perdikaris P, Karniadakis GE. Physics-informedneural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686–707.
46. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson D. Spectral analysis of nonlinear flows. J Fluid Mech.

2009;645:115–27.
47. Rudy SH, Brunton SL, Proctor JL, Kutz JN. Data-driven discovery of partial differential equations. Sci Adv.

2017;3:e1602614.
48. Schaeffer H. Learning partial differential equations via data discovery and sparse optimization. Proc R Soc A Math

Phys Eng Sci. 2017;473(2197):20160446.
49. Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech. 2010;656:5–28.
50. Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science. 2009;324(5923):81–5.
51. Semeraro O, Lusseyran F, Pastur L, Jordan P. Qualitative dynamics of wavepackets in turbulent jets. 2016. arXiv preprint

arXiv:1608.06750.
52. Singh AP, Medida S, Duraisamy K. Machine-learning-augmented predictive modeling of turbulent separated flows

over airfoils. AIAA J. 2017;55:2215–27.
53. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199–222.
54. Swischuk R, Mainini L, Peherstorfer B, Willcox K. Projection-based model reduction: formulations for physics-based

machine learning. Comput Fluids. 2018;179:704–17.
55. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc: Ser B (Methodol). 1996;58(1):267–88.
56. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. On dynamicmode decomposition: theory and applications.

J Comput Dyn. 2014;1(2):391–421.
57. Vaerenbergh SV, et al. Kernel methods for nonlinear identification, equalization and separation of signals. Universidad

de Cantabria; 2010.
58. Vlachas PR, Byeon W, Wan ZY, Sapsis TP, Koumoutsakos P. Data-driven forecasting of high-dimensional chaotic

systems with long short-term memory networks. Proc R Soc A. 2018;474(2213):20170844.
59. Wan ZY, Sapsis TP. Reduced-space Gaussian process regression for data-driven probabilistic forecast of chaotic

dynamical systems. Physica D: Nonlinear Phenomena. 2017;345:40–55.
60. Wan ZY, Vlachas P, Koumoutsakos P, Sapsis T. Data-assisted reduced-order modeling of extreme events in complex

dynamical systems. PLoS ONE. 2018;13(5):e0197704.
61. Wang JX, Wu JL, Xiao H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling

discrepancies based on dns data. Phys Rev Fluids. 2017;2(3):034603.
62. Wang M, Li H, Chen X, Chen Y. Deep learning-based model reduction for distributed parameter systems. IEEE Trans

Syst Man Cybern: Syst. 2016;46(12):1664–74.
63. WangQ, Hesthaven JS, RayD. Non-intrusive reduced ordermodeling of unsteady flows using artificial neural networks

with application to a combustion problem. J Comput Phys. 2018. http://infoscience.epfl.ch/record/255708.
64. Wirtz D, Haasdonk B. A vectorial kernel orthogonal greedy algorithm. Dolomites Res Notes Approx. 2013;6(Special-

Issue):83–100.
65. Wirtz D, Karajan N, Haasdonk B. Surrogatemodeling of multiscalemodels using kernel methods. Int J Numer Methods

Eng. 2015;101(1):1–28.

http://arxiv.org/abs/1709.00939
https://doi.org/10.1155/2018/4801012
http://arxiv.org/abs/1701.02440
http://arxiv.org/abs/1608.06750
http://infoscience.epfl.ch/record/255708

Bai et al. Adv. Model. and Simul. in Eng. Sci. (2021) 8:28 Page 24 of 24

66. Xiao D, Fang F, Pain C, Hu G. Non-intrusive reduced-order modelling of the Navier-stokes equations based on rbf
interpolation. Int J Numer Methods Fluids. 2015;79(11):580–95.

67. Xie X, Mohebujjaman M, Rebholz L, Iliescu T. Data-driven filtered reduced order modeling of fluid flows. SIAM J Sci
Comput. 2018;40(3):B834–57.

68. Xie X, Zhang G, Webster CG. Non-intrusive inference reduced order model for fluids using deep multistep neural
network. Mathematics. 2019;7(8):757.

69. ZhangZJ, Duraisamy K.Machine learningmethods for data-driven turbulencemodeling. In: 22ndAIAA computational
fluid dynamics conference, AIAA, 2015. p. 2460.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators
	Abstract
	Introduction
	Problem formulation
	General nonlinear dynamical systems
	Galerkin projection

	Regression-based reduced operator approximation
	Mathematical formulation
	Surrogate ROM
	Error analysis

	Numerical experiments
	1D Burgers' equation
	Data collection
	Model validation
	Simulation of the surrogate ROM

	2D convection–diffusion
	Data collection
	Model validation
	Simulation of the surrogate ROM

	Conclusions
	Declarations

	Appendix A: Regression models and tuning
	Special regression models
	Vectorial kernel orthogonal greedy algorithm (VKOGA)
	Sparse identification of nonlinear dynamics (SINDy)

	Cross-validation and hyperparameter tuning

	References

