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Introduction
The solutions of the initial, boundary, or mixed value problems have become common to 
be obtained through the integral equation method. This technique converts the solution 
of the value problems to the solutions of certain equivalent boundary integral equations 
of specified types and kinds. One of the common equivalent boundary integral equations 
is‏ ‏the weakly singular Fredholm integral equations of the second kind. These equations 
appear in many engineering fields, such as radiation, potential theory, scattering, elec-
tromagnetism, and other scientific fields [1–5]. The singularities of the integral equation 
are due to the singular kernel or the singular unknown function or the singularity of 
both. For example, the Dirichlet boundary value problems for the Laplace equation for 
an open arc in the plane is predominantly reduced to the solution of a weakly singular 
Fredholm integral equation of the first kind whose unknown function is singular at the 
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endpoints of the integration domain and has weakly logarithmic kernels [6–14]. Dmi-
triev et al. [6] provided an iterative method for solving the Fredholm integral equation 
of the first kind with a weakly singular logarithmic kernel and a nonsingular unknown 
function. Shoukralla [7, 8] presented two methods for the solution of the logarithmic 
singular kernel Fredholm integral equation with a singular unknown function. The ker-
nel singularity is isolated analytically, depending on the Kantorovich technique, and the 
unknown functions are approximated on the basis of the Taylor and Chebyshev polyno-
mials with an analytical treatment of the singularity. These techniques provided accept-
able solutions at that time, regardless of the difficulty and the complexity of the two 
procedures. Shoukralla [9, 10] solved the same integral equation on the basis of Cheby-
shev polynomials of the second kind, thus providing high-accuracy results.

Shoukralla et  al. [11–13] solved a certain class of singular Fredholm integral equa-
tion of the first kind with singular logarithmic kernels and singular unknown func-
tions on the basis of monic and economized monic Chebyshev functions with different 
approaches for removing the singularities. In this study, we focus on the numerical solu-
tion of the second kind of Fredholm equations with another type of kernel’s singularity, 
which needs another technique different from those for the singular logarithmic kernels 
of Fredholm equations of the first kind. Many methods for solving weakly singular Fred-
holm integral equations of the second kind have been published [14–25]. For example, 
Yin et  al. [14], used the Jacobi–Gauss quadrature formula to approximate the integral 
operator in the numerical implementation of the spectral collocation method and estab-
lished the spectral Chebyshev collocation method for solving Fredholm integral equa-
tions of the second kind with the weakly singular kernel. This method shows that the 
errors of the approximate solution decay exponentially in infinity and weighted norms. 
Behzadi et  al. [15] developed some modifications on the generalization of the Euler–
Maclaurin summation formula by using Bernoulli functions to construct such general-
ized quadrature and to construct a numerical method based on the trapezoidal rule for 
solving weakly singular integral equations.

In this study, we make progress toward the application of some advanced single 
and double barycentric Lagrange interpolation formulas and how to adapt them to be 
applicable to completely isolating the kernel singularity and find accurate solutions of 
the weakly singular Fredholm equations of the second kind. Shoukralla et  al. [26–29] 
developed a new version of the traditional barycentric Lagrange interpolation [30] and 
applied it successfully to solve linear and nonsingular Volterra integral equations of the 
second kind. For weakly singular Fredholm equations of the second kind, the matter is 
more complicated due to some difficulties related to the singularity of the kernel.

This study focuses on the application of two advanced barycentric interpolation for-
mulas to solve the weakly singular Fredholm integral equation of the second kind with 
two innovative techniques for the treatment of the kernel’s singularity depending on the 
perfect choice of the node distribution rules. Naturally, our primary aim is to reduce 
computation complexity, but whether or how fast the interpolant solution converges to 
the exact one is at least as important.

One of the advantages of the presented techniques is the designed rules for the dis-
tribution of nodes so that they always remain within the domain of the integration and 
never be outside. Moreover, these rules are designed so that the difference between the 
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nodes subjected to the two variables of the kernel remains always positive. Thus, based 
on this idea, the numerical solutions become stable [31] on the whole interval even at 
the endpoints, as shown in the solved examples.

We begin by interpolating the unknown and data functions by using the advanced 
single matrix-form barycentric interpolate polynomials; each is expressed through four 
matrices, and one of which is the monomial basis functions matrix [32]. The weakly sin-
gular kernel is then interpolated twice concerning its two arguments; the first interpola-
tion concerning the first variable of a positive sign with node distribution on the right 
half of the integration domain, and the second interpolation concerning the variable 
of negative sign and the distribution of the nodes will be held on the other left half of 
the integration domain. This generous scheme ensures that the difference between the 
kernel’s two variables always remains positive, thus completely erasing the singularity 
of the kernel and expressing it through five matrices; two of which are monomial basis 
matrices.

Additional advantages of these techniques are not only to simplify the calculations but 
also to gain access to an equivalent linear system of algebraic equations without apply-
ing the collocation method. The implementation of this idea is achieved by substituting 
the interpolant unknown function on both sides of the integral equation. By solving the 
obtained algebraic linear system directly, the unknown coefficient matrix can be found, 
consequently finding the interpolant unknown function. The six examples are solved by 
using the two presented techniques; examples 1–4 are for weakly singular equations, 
while examples 5–6 are for linear nonsingular equations. The first three examples are 
also solved by a trapezoidal approach mentioned in [14], whereas the fourth boundary 
integral equation, which arises from the problem of radiation, potential theory, scatter-
ing theory, electromagnetism, and hydrodynamics, is solved in [15]. The solutions of 
examples 1–4 which are obtained by the two presented techniques are found to strongly 
converge to the exact solutions compared with [14, 15]. The solutions to examples 5–6 
which are obtained by the two presented techniques are found to be equal to the exact 
solutions. The given tables and graphs demonstrate the originality, eligibility, and accu-
racy of the presented new method.

Advanced barycentric Lagrange interpolation formula
The question of expressing a given function by an interpolant is vital in approxima-
tion theory, as well as in computational methods. A remarkable advantage of Lagrange 
interpolation is its independence of the arrangement of the selected nodes, although 
the efficient results require a few nodes. By contrast, the increasing number of nodes 
leads to complicate the scheme and the instability of the numerical solution. That is, the 
barycentric Lagrange interpolation is a fantastic formula to increase the performance 
of traditional Lagrange interpolation. In this section, we provide a different mathemat-
ical formula in form and content that exceeds the well-known traditional barycentric 
Lagrange formula. The new formula is expressed through matrices; one of them is the 
monomial basis matrix, which is canceled in the solution’s procedure. Thus, the steps of 
the solution are reduced, the round-off error is minimized, and high-precision solutions 
are provided.
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Let the function f (x) be defined on [a, b] as the tabulated function f (xi) = fi ; i = 0, n 
for the set of (n+ 1) equally spaced distinct nodes {xi}ni=0 such that xi = a+ ih , where 
the step size h is defined by h = b−a

n  . Then, Berrut et al. [14] provided the barycentric 
Lagrange interpolating polynomial of degree n , f̃n(x) , which interpolates the tabulated 
function f (xi) = fi such that f̃n(xi) = f (xi) = fi in the following form:

Although Formula (1) is simpler than the traditional Lagrange interpolating polyno-
mial [14], it is still difficult to apply for interpolating the unknown functions, as well as 
the kernels of integral equations of any types and kinds because it hinders the facilitation 
of the steps of the solution and causes some computational impediments. Therefore, we 
adapt this formula before using it so that it becomes easier to apply for solving integral 
equations. Using some operational matrix algebra, we can increase the computational 
efficiency of Formula (1) and achieve an improved matrix formula by expanding the 
numerator and distributing it on the denominator by separating the barycentric weights 
wi . Thus, we obtain f̃n(x) in the modified matrix form

Here, �(x) is the 1× (n+ 1) row matrix, W= diag{w0,w1, ..,wn} is the (n+ 1)× (n+ 1) 
square diagonal matrix whose entries wi are defined by (1), and FT=[fi]

n
i=0 is (n+ 1)× 1 

column matrix whose entries fi are the functional values of f (x) such that

By studying the behavior of matrix Formula (2), we can perform analysis so that the 
so-called monomial matrix is separated. This idea can be implemented by extracting the 
coefficients of the barycentric functions of the matrix �(x) . Moreover, the numerator 
and the denominator have common factors, and these factors annihilate each other. This 
idea gives us the incentive to rearrange the terms of each barycentric function in the 
ascending power of x or simply expand each function into a Maclaurin polynomial in a 
matrix form of multiplied two matrices; one of which is the monomial basis matrix, and 
the other is the Maclaurin coefficient. On the basis of this idea, Formula (2) is expressed 
via four matrices as follows:

where the 1× (n+ 1) monomial basis row matrix X(x) and the (n+ 1)× (n+ 1) square 
Maclaurin coefficient matrix C are defined by

(1)f̃n(x) =
n

∑

i=0

wi

x − xi
fi

/

n
∑

i=0

wi

x − xi
; wi = (−1)i

(

n
i

)

.

(2)f̃n(x) = �(x)WF.

(3)

�(x) = [ψi(x)]
n
i=0; ψi(x) =

ξi(x)

φ(x)
, φ(x) =

n
∑

i=0

wiξi(x), ξi(x) =
1

x − xi
; i = 0, n.

(4)f̃n(x) = X(x)CWF,

(5)X(x) =
[

xi
]n

i=0
, CT =

[

cij
]n

i,j=0
; cij =

ψ
(j)
i (0)

j!
∀i, j = 0, n.
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Thus, we have derived a simple and magnificent matrix formula for raising the computa-
tional efficiency of the traditional barycentric Lagrange interpolation (1) that can be easily 
applicable to find the interpolant polynomial of any function f (x) defined on the interval 
[a, b] . We name the right-hand side of (4) “advanced barycentric Lagrange single interpola-
tion formula.” Applying Formula (4) for interpolating the data and unknown functions of 
integral equations remarkably reduces the solution steps due to some operational matrix 
abbreviations, considerably contributing to the reduction in round-off errors and saving 
time. Now, we apply the new Formula (4) to solve weakly singular Fredholm integral equa-
tions of the second kind.

Advanced barycentric interpolation formulas for solving weakly singular 
fredholm integral equations of the second kind
Here, we present two new techniques for solving weakly singular Fredholm integral equa-
tions of the second kind. This method starts by interpolating the unknown and data func-
tions using Formula (4). As for the kernel, we use Formula (4) twice to obtain a double 
interpolant polynomial through five matrices. In this manner, we provide two techniques 
for choosing the distribution nodes of the two main variables x and t of the kernel. In the 
first technique, the x−nodes are distributed on the right half of the integration domain, 
whereas the t−nodes are distributed on the left half. The step sizes for the two sets of nodes 
depend on some real numbers δ1, δ2 ≥ 0 that depend on the degree of the interpolation 
degrees. In the second technique, we present two different sets of node distributions cor-
responding to two variables, all of which are distributed on the entire integration domain. 
Consider the weakly singular Fredholm integral equation of the second kind.

where ϕ(x) is a given function, and u(x) is the unknown function defined on L2[a, b] . 
Here, the given kernel k(x, t) takes the form k(x, t) = 1

|x−t|α  ; 0 < α < 1 . Moreover, 
max

x,t∈[a,b]

∣

∣k(x, t)
∣

∣ ≤ N  , max
x∈[a,b]

|ϕ(x)| ≤ M , max
x∈[a,b]

|u(x)| ≤ L for N ,M, L are assumed to be 

real numbers.

The first technique

Let ϕ̃n(x) be the single interpolant polynomial that interpolates ϕ(x) of (6) on the basis of 
Formula (4) such that ϕ̃n(x) ≈ ϕ(x) and ϕ̃n(xi) = ϕ(xi) for the set of equidistant nodes 
{xi}ni=0; xi = a+ ih, h = b−a

n  . By using the new Formula (4), ϕ(x) can be replaced by its 
interpolant polynomial ϕ̃n(x) of degree n in the matrix form

where P = CW is the (n+ 1)× (n+ 1) square matrix, and � is the (n+ 1)× 1 column 
matrix such that

(6)u(x) = ϕ(x)+
b

∫

a

k(x, t)u(t)dt; a ≤ x ≤ b,

(7)ϕ̃n(x) = X(x)CW� = X(x)P�; P = CW,

(8)
P = CW, PT=

[

pij
]n

i,j=0
; pij = cijwi; i, j = 0, n, �T = [ϕi]

N
I=0; ϕi = ϕ(xi); i = 0, n,
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 and cij are calculated by (5). Similarly, the unknown function u(x) , as well as ϕ(x) , can be 
interpolated to obtain its unknown single interpolant polynomial ũn(x) in the following 
matrix form:

where U = [ui]
n
i=0 is the (n+ 1)× 1 unknown coefficient column matrix to be deter-

mined, where the entries {ui}ni=0 are the undetermined coefficients of the unknown sin-
gle interpolant polynomial.

Consequently, for the weakly singular kernel k(x, t) = 1
|x−t|α  , which is singular when 

x → t , we interpolate it twice; the first interpolation is performed with respect to x , 
and the second is performed with respect to t so that we can obtain the double inter-
polant polynomial k̃n,n(x, t) of two variables x and t . The mathematical properties of 
the kernel force us to design an innovative new technique that has the potential to 
remove this singularity. This goal can only be achieved under the important and nec-
essary condition that x > t . Thus, we adopt an approach based on the appropriate 
choice of two different sets of nodes; the first set 

{

x̃i
}n

i=0
 is distributed on the right-

half interval of the integration domain 
[

b−a
2 , b

]

 , and the second set of nodes 
{

t̃i
}n

i=0
 is 

distributed on the left-half interval 
[

a, b−a
2

]

 . This yields two barycentric function sum-

mations ρ(x), ρ̃(x) ; the first summation ρ(x) corresponds to the set of nodes 
{

x̃i
}n

i=0
 

and the barycentric functions ̟i(x) = ζi(x)
ρ(x) for ζi(x) = 1

x−x̃i
 , whereas the second bar-

ycentric function summation ρ̃(x) corresponds to the set of nodes 
{

t̃i
}n

i=0
 and the bar-

ycentric functions ˜̟ i(t) = ζ̃i(t)
ρ̃(t)

 for ζ̃i(t) = 1
t−t̃i

 . We define x̃i and t̃i as follows:

We choose δ1, δ2 ≥ 0 such that b−a
2 < h1 < b and a < h2 <

b−a
2  . Moreover, we put 

h2 = b−3a−4δ2
n+0.1  for the kernel of the form |1− t|−1/2 , that is, if x = 1.  The two summa-

tions ρ(x), ρ̃(x) are defined by

By using the same strategy used to drive Formula (4), the kernel k(x, t) can be inter-
polated using the set of nodes 

{

x̃i
}n

i=0
 via four matrices as follows:

where K
(

x̃i, t
)

 is the column matrix such that

In the same context, we again interpolate each function k
(

x̃i, t
)

 for i = 0, n by using 
the set of nodes 

{

t̃j
}n

j=0
 . After strenuous substitution and abbreviations, which are 

performed using some matrix operations, we obtain the kernel through five matrices; 
two of which are the monomial basis function matrices, that is, the row monomial 

(9)ũn(x) = X(x)PU,

(10)
x̃i = a+0.5+ih1; h1 =

b− a− 4δ1

2n
, t̃i = a+ih2; h2 =

b− a− 4δ2

2n
; i = 0, n.

ρ(x) =
n

∑

i=0

wiζi(x); ρ̃(t) =
n

∑

i=0

wiζ̃i(t);ζi(x) =
1

x − x̃i
, ζ̃i(t) =

1

t − t̃i
.

(11)k̃n,n(x, t) = X(x)CWK
(

x̃i, t
)

,

(12)KT
(

x̃i, t
)

=
[

k
(

x̃0, t
)

k
(

x̃1, t
)

k
(

x̃2, t
)

... k
(

x̃n, t
) ]

.
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basis function matrix X(x) subjected to x and the column monomial basis function 
matrix XT (t) subjected to t . Thus, we obtain the advanced barycentric double inter-
polant polynomial k̃n,n(x, t) via five matrices as follows:

where the (n+ 1)× (n+ 1) square matrix K is calculated as follows:

Here, AT =
[

aij
]n

i,j=0
 and BT =

[

bij
]n

i,j=0
 are (n+ 1)× (n+ 1) square matrices whose 

entries aij and bij can be calculated by

Moreover, substituting k̃n,n(x, t) given by (13) and ũn(t) given by (9) into the right side 
of (6), we obtain ũn(x) in the following matrix form:

where the (n+ 1)× (n+ 1) square matrix N and the (n+ 1)× (n+ 1) square matrix 
X̃(t) are defined by

By integrating the right side of (16), we obtain

Here, the (n+ 1)× (n+ 1) square matrix H is given by

Furthermore, by replacing ũn(x) defined by (9) with u(x) on the left side of (6) and 
replacing k̃n,n(x, t)ũn(t) with u(t)k(x, t) on the right side, we obtain

Simplifying (20) yields the linear algebraic system

By applying any direct method, we can solve system (21) to obtain the unknown coef-
ficient column matrix U:

(13)k̃n,n(x, t) = X(x)AKBXT (t),

(14)K =
[

wijkij
]n

i,j=0
; kij = k

(

x̃i, t̃j
)

;wij = wi × wj ; i, j = 0, n.

(15)aij =
̟
(j)
i (0)

j!
,bij =

˜̟ (j)i (0)

j!
∀i, j = 0, n.

(16)ũn(x) = ϕ(x)+
b

∫

a

X(x)NX̃(t)PUdt,

(17)N = AKB, X̃(t) = XT (t)X(t) =
[

ti+j
]n

i,j=0
.

(18)ũn(x) = ϕ(x)+X(x)NHPU.

(19)

H =
b

∫

a

X̃(t)dt =
[

hij
]n

i,j=0
; hij =

b
∫

a

ti+jdt =
ti+j+1

i + j + 1

∣

∣

∣

∣

b

a

=
bi+j+1 − ai+j+1

i + j + 1
; i, j = 0, n.

(20)X(x)NHPU− X(x)NHNHPU = X(x)NHP�.

(21)(I−NH)PU = P�.

(22)U = P−1M−1P�; M = (I−NH).
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Accordingly, the interpolant solution that was given by (9) then takes the simple 
matrix form

where � is the (n+ 1)× 1 column matrix

The entries {γi}ni=0 of � can be easily calculated from the product of the multiplied 
three known coefficient matrices M−1P� . Hence, the interpolant polynomial solution of 
the considered integral Eq. (6) is given by

The second technique

We choose the two sets of nodes 
{

x̃i
}n

i=0
 and 

{

t̃j
}n

j=0
 ; each (n+ 1) equally spaced distinct 

node corresponds to the two variables x, t . These sets of nodes are distributed on the 
whole domain [a, b] and never come outside. Based on these two sets of nodes that 
depend on step sizes h1, h2 , which by extension depend on some positive numbers 
δ1 ≥ 0, δ2 ≥ 0 , we define

and

Based on the modified matrix forms (2)–(5), we obtain ũn(x) and f̃n(x) in the form

The kernel k(x, t) is now interpolated twice; the first interpolation is performed with 
respect to the argument x , whereas the second interpolation is performed with respect 
to the argument t in inverse matrix orders. Thus, we obtain the modified barycentric 
double interpolant kernel k̃n,n(x, t) in the form

Here, NT (t) =
[

nj(t)
]n

j=0
 is the (n+ 1)× 1 column matrix of the barycentric functions 

nj(x) , where

and the known square matrix K is given by

(23)ũn(x) = X(x)PP−1M−1P� = X(x)�,

(24)� = M−1P� = [γi]
n
i=0.

(25)ũn(x) =
n

∑

i=0

γix
i; a ≤ x ≤ b.

(26)h1 =
(b− δ1)− (a+ δ1)

n
, h2 =

(b− δ2)− (a+ δ2)

n
,

(27)xi = (a+ δ1)+ ih1, tj = (a+ δ2)+ jh2; i, j = 0, n.

(28)ũn(x) = �(x)WU, f̃n(x) = �(x)WF.

(29)k̃n,n(x, t) = �(x)KNT (t).

(30)nj(t) =
ξi(t)

ϕ(t)
, ξj(t) =

1

t − tj
,ϕ(t) =

n
∑

j=0

wj ξj(x) ; wj = (−1)j
(

n
j

)

,
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By virtue of Eqs. (28) and (29), the product of the single interpolant unknown function 
ũn(t) by the double interpolated kernel kn,n(x, t) can be replaced by the following matrix 
form:

Now, replacing k(x, t)u(t) in the right side of (6) with kn,n(x, t)un(t) given by (31), we 
obtain ũn(x) in the form

Moreover, by replacing the matrix–vector single interpolant ũn(x) that was given by 
(28) into both sides of (6), replacing the matrix–vector double interpolated kernel for 
kn,n(x, t) that was given by (29) with k(x, t) , and replacing f (t) with f̃n(t) that was given 
by (28), we find that

Simplifying Eq. (34) yields

From this equation, we can find the required unknown coefficients matrix 
U = (W− K�W)−1WF ; by substituting into (28), we obtain the matrix–vector single 
interpolant ũn(x)

Convergence and error analysis
In this section, we study the convergence in the mean [33, 34] of the interpolant 
unknown function ũn(x) described in first technique to the exact solution u(x).

Theorem 4.1 Assume u(x) ∈ X is a sufficiently smooth exact solution of (6) such that 
max
x∈[a,b]

|u(x)| ≤ ε . Then,

Proof Let the exact solution u(x) be expanded into a Maclaurin series

(31)K =
[

kij
]n

i,j=0
; kij = wij k

(

xi, tj
)

; wij = wi × wj .

(32)
kn,n(x, t)un(t) = �(x)KNT (t)�(t)WU = �(x)K�̃(t)WU; �̃(t) = NT (t)�(t).

(33)ũn(x) = f (x)+�(x)K�WU;� =
b

∫

a

�̃(t)dt.

(34)�(x)K�WU−
b

∫

a

�(x)K�̃(t)K�WUdt =
b

∫

a

�(x)K�̃(t)WFdt.

(35)�(x)K�WU−�(x)K�K�WU = �(x)K�WF.

(36)ũn(x) = �(x)W(W− K�W)−1WF.

(37)lim
n→∞

�u(x)− ũn(x)�2 = 0.

(38)u(x) =
∞
∑

s=0

αsx
s.
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Then, we have

Here, we find from Eq. (25) that

From (38), we obtain

From the Schwarz inequity, we have

By substituting Eqs. (32), (33), and (34) into Eq. (31) on the basis of s, k → ∞ , we have 
proven that

(39)

�u(x)− ũn(x)�2 =
b

∫

a

|u(x)− ũn(x)|2dx =
b

∫

a

|u(x)|2dx+
b

∫

a

|ũn(x)|2dx−2

b
∫

a

|u(x)ũn(x)|dx.

(40)

b
∫

a

|ũn(x)|2dx =
b

∫

a

∣

∣

∣

∣

∣

∣

n
∑

i=0

γix
i

n
∑

j=0

γjx
j

∣

∣

∣

∣

∣

∣

dx =
n

∑

i=0

n
∑

j=0

γiγj

b
∫

a

xi+jdx

=
n

∑

i=0

n
∑

j=0

γiγj

i + j + 1

(

bi+j+1 − ai+j+1
)

.

(41)

b
∫

a

|u(x)|2dx =
b

∫

a

∣

∣

∣

∣

∣

∞
∑

s=0

αsx
s

∞
∑

k=0

αkx
k

∣

∣

∣

∣

∣

dx =
∞
∑

s=0

∞
∑

k=0

αsαk

b
∫

a

xs+kdx

=
∞
∑

s=0

∞
∑

k=0

αsαk

s + k + 1

(

bs+k+1 − as+k+1
)

.

(42)

b
�

a

|ũn(x)u(x)|dx ≤





b
�

a

|ũn(x)|2dx





1

2

×





b
�

a

|u(x)|2dx





1

2

=





n
�

i=0

n
�

j=0

γiγj

i + j + 1

�

bi+j+1 − ai+j+1

�





1

2

×
� ∞
�

s=0

∞
�

k=0

αsαk

s + k + 1

�

bs+k+1 − as+k+1

�

�
1

2

.

(43)

lim
n→∞

�u(x)− ũn(x)�2 =





∞
�

s=0

∞
�

k=0

αsαk

s + k + 1
+

n
�

i=0

n
�

j=0

γiγj

i + j + 1





�

bi+j+1 − ai+j+1
�

− 2





n
�

i=0

n
�

j=0

γiγj

i + j + 1

�

bi+j+1 − ai+j+1
�





1
2

×
� ∞
�

s=0

∞
�

k=0

αsαk

s + k + 1

�

bs+k+1 − as+k+1
�

�
1
2

= 0.
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The goal now is to estimate the error of interpolation. We Sample the total error of the 
approximation by εn(x) . Thus, εn(x) = �u(x)− ũn(x)�2 , where ‖ .‖2 denotes the Euclid-
ean norm in R2. □

Theorem 4.2 Let L be a compact linear bounded operator with a weakly singular ker-
nel defined on the Banach space X → X , where X = L2[a, b] , such that

and

Then,

Proof Substituting Eqs. (44) and (45) into Eq. (6) we get

Thus, we have

Here, we have

where

and

(44)L(u(t)) =
b

∫

a

u(t)

|x − t|α
dt; 0 < α < 1, a ≤ x ≤ b,

(45)L(ũn(t)) =
b

∫

a

ũn(t)

|x − t|α
dt; 0 < α < 1, a ≤ x ≤ b.

(46)εn = �u(x)− ũn(x)� = 0.

(47)u(x) = ϕ(x)+ L(u(t)), ũn(x) = ϕ(x)+ L(ũn(t)).

(48)

εn = �u(x)− ũn(x)�⊖ = �L(u(t))− L(ũn(t))�

=

�

�

�

�

�

�

b
�

a

1

|x − t|α
u(t)dt −

b
�

a

1

|x − t|α
ũn(t)dt

�

�

�

�

�

�

=







b
�

a

�

�

�

�

�

�

b
�

a

1

|x − t|α
u(t)dt −

b
�

a

1

|x − t|α
ũn(t)dt

�

�

�

�

�

�

2

dx







1

2

=







b
�

a

�

�

�

�

�

�

b
�

a

u(t)

|x − t|α
dt −

n
�

i=0

γ̃ix
i

�

�

�

�

�

�

2

dx







1

2

.

(49)
b

∫

a

1

|x − t|α
ũn(t)dt =

b
∫

a

X(x)AKBXT (t)X(t)�dt = X(x)AKBH� = X(x)�̃,

(50)�̃ = AKBH�=[γ̃i]
n
i=0,
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and

Let E− �̃ be a column matrix with entries denoted by �i . Then, we have proven that\
limits_{i = 0}^{n} {\gamma_{i} x^{i} 

Computational results and discussions
Based on the two presented techniques, we designed two MATLAB R2019b codes for 
the solution of four weakly singular Fredholm integral equations of the second kind. 
We find the interpolant solutions for the six examples by applying the two given tech-
niques and compare the obtained results with the exact solutions. The obtained inter-
polated solutions to examples 1–4 strongly converge to the exact ones faster than the 
methods mentioned in [20, 21]. Moreover, the interpolation is found easily and uni-
formly rather than these complicated results that are mentioned in [20, 21], as shown 
in the given tables and figures that are superior. The obtained interpolate solutions to 
the examples 5–6 for nonsingular equations are found equal to the exact solution. We 
denoted the exact solution by uex(x) and the interpolant solutions obtained by using 
the first and second techniques are denoted by ũ1n(x) and ũ2n(x) , respectively, where n 
denotes the interpolant degree.

Example 1 Consider the integral equation,

(51)

b
∫

a

1

|x − t|α
u(t)dt =

b
∫

a

X(x)FXT (t) ˜̃X(t) ˜̃�dt =
b

∫

a

X(x)FZ(t) ˜̃�dt = X(x)FZ̃ ˜̃
� = X(x)E,

(52)
F = AKB =

[

fij
]n

i,j=0
, E = Z̃

˜̃
�, Z(t) = XT (t) ˜̃X(t); ˜̃X(t) = lim

m→∞

[

tq
]m

q=0
,

˜̃
� = lim

m→∞

[

αq
]m

q=0
,

(53)
Z̃ =

b
∫

a

Z(t)dt = lim
m→∞

[

ziq
]n,m

i,q=0
; ziq =

b
∫

a

ti+qdt

=
bi+q+1 − ai+q+1

i + q + 1
; i = 0, n, q = 0, 1, 2, ....

(54)

εn = �u(x)− ũn(x)�⊖{{=}}







b
�

a

�

�

�

�

�

�

b
�

a

1

|x − t|α
u(t)dt −

b
�

a

1

|x − t|α
ũn(t)dt

�

�

�

�

�

�

2

dx







1
2

=





b
�

a

�

�

�
X(x)

�

E− �̃

��

�

�

2

dx





1
2

= lim
m→∞





n
�

i=0

m
�

q=0

�i�j

i + q + 1

�

bi+q+1 − ai+q+1
�





1
2

= 0.
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Table 1 The absolute errors R1
n(xi) for n = 2, 5

xi R
1

2
(xi) R

1

5
(xi)

0 0.00359 0.0021782

0.1 0.00359 0.0021782

0.2 0.00359 0.0021782

0.3 0.00359 0.0021782

0.4 0.00359 0.0021782

0.5 0.00359 0.0021782

0.6 0.00359 0.0021782

0.7 0.00359 0.0021782

0.8 0.00359 0.0021782

0.9 0.00359 0.0021782

1.0 0.0036 0.0021782

0

0.005

0 0.10.20.30.40.50.60.70.80.9 1

The Absolute Erorrs for n=2

The Absolute Erorrs for n=5
Fig. 1 The First Technique

Table 2 The absolute errors R2
n(xi) for n = 4, 6

xi R
2

4
(xi) R

2

6
(xi)

0 0.10881 0.004659

0.1 0.10881 0.004659

0.2 0.10881 0.004659

0.3 0.10881 0.004659

0.4 0.10881 0.00466

0.5 0.10881 0.00466

0.6 0.10881 0.00466

0.7 0.10881 0.00466

0.8 0.10881 0.00466

0.9 0.10881 0.00466

1.0 0.10881 0.00466

0

0.2

0 0.10.20.30.40.50.60.70.80.9 1

The Absolute Erorrs for n=4
The Absolute Erorrs for n=6

Fig.2 The First Technique
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whose exact solution is given by uex(x) = x2 [20]. Using the first technique for 
δ1 = δ2 = 0 with x = 1 in the kernel, we obtained uniformly interpolated polynomi-
als  ũ1n(x) for n = 2, 5 . The CPU time for n = 2 was 8.294 s and for n = 5 was 12.893 s. 
We evaluated the exact solution values uex(xi) and ũ1n(xi) for n = 2, 5 at the set of nodes 
xi = 0 : 0.1 : 1.0 and then estimated the absolute errors R1

n(xi) =
∣

∣uex(xi)− ũ1n(xi)
∣

∣ 
for n = 2, 5 as shown in Table  1. In Fig.  1, plotted are the graphs of absolute errors 
R1
n(xi) for n = 2, 5 . Using the second technique for n = 4, 6 and δ1 = 0 , δ2 = 1/150 , 

we obtained the uniformly interpolated polynomials ũ24(x), ũ
2
6(x) . The total CPU time 

for n = 4 was 12.356 s and for n = 6 was 18.000 s. We evaluated uex(xi) and ũ2n(xi) for 
n = 4, 6 at the set of nodes xi = 0 : 0.1 : 1.0 and hence estimated the absolute errors 
R2
n(xi) =

∣

∣uex(xi)− ũ2n(xi)
∣

∣ for n = 4, 6 as shown in Table  2. In Fig.  2, plotted are the 
graphs of the absolute errors R2

n(xi) for n = 4, 6.

Example 2 Consider the integral equation,

(55)u(x) = x2 −
16

15
+

1
∫

0

u(t)√
1− t

dt; 0 ≤ x ≤ 1,

(56)u(x) =
√
x −

π

2
+

1
∫

0

u(t)√
1− t

dt; 0 ≤ x ≤ 1,

Table 3 The absolute errors R1
n(xi) for n = 2, 3

xi R
1

2
(xi) R

1

3
(xi)

0 0.030966 0.019942

0.1 0.030966 0.01994

0.2 0.030966 0.01995

0.3 0.030966 0.01994

0.4 0.030966 0.01994

0.5 0.030966 0.01994

0.6 0.030966 0.01994

0.7 0.030966 0.01994

0.8 0.030966 0.01994

0.9 0.030966 0.01995

1 0.030966 0.0199

0

0.05

0 0.10.20.30.40.50.60.70.80.9 1

The absolute Erorrs for n=2
The absolute Erorrs for n=3

Fig. 3 The First Technique
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whose exact solution is given by uex(x) =
√
x [20]. Using the first technique for n = 2, 3 , 

and δ1 = δ2 = 0 while x = 1 in the kernel, we obtained the uniformly interpolated 
polynomials ũ12(x), ũ

1
3(x) . The CPU total time for n = 2 was 8.282  s and for n = 3 was 

9.013 s. We evaluated the exact solution values uex(xi) and the interpolated polynomi-
als ũ12(xi), ũ

1
3(xi) at the set of nodes xi = 0 : 0.1 : 1.0 and hence estimated the absolute 

errors R1
n(xi) =

∣

∣uex(xi)− ũ1n(xi)
∣

∣ for n = 2, 3 as shown in Table 3. In Fig. 3, plotted are 
the graphs of the absolute errors R1

n(xi) for n = 2, 3. Using the second technique for 
n = 8, 12 and δ1 = 0, δ2 = 1/300, we obtained the uniformly interpolated polynomials 

Table 4 The absolute errors R2
n(xi) for n = 8, 12

xi R
2

8
(xi) R

2

12
(xi)

0 0.067624 0.00799

0.1 0.072018 0.00876

0.2 0.066423 0.00789

0.3 0.06801 0.00801

0.4 0.067507 0.00799

0.5 0.067624 0.00799

0.6 0.067704 0.00800

0.7 0.067452 0.00798

0.8 0.067949 0.00802

0.9 0.067051 0.00790

1 0.067624 0.00799

0

0.1

0 0.10.20.30.40.50.60.70.80.9 1

The Absolute Erorrs for n=8
The Absolute Erorrs for n=12

Fig. 4 The Second Technique

Table 5 The absolute errors R1
n(xi) for n = 3, 5

xi R
1

3
(xi) R

1

5
(xi)

0 0.10872 0.0095

0.1 0.10872 0.0095

0.2 0.10872 0.0095

0.3 0.10872 0.0095

0.4 0.10872 0.0095

0.5 0.10872 0.0095

0.6 0.10872 0.0095

0.7 0.10872 0.0095

0.8 0.10872 0.0095

0.9 0.10872 0.0095

1.0 0.10872 0.0095
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ũ28(x), ũ
2
12(x) . The CPU total time for n = 8 was 24.775 s and for n = 12 was 44.715 s. 

We evaluated the exact solution values uex(xi) and ũ28(xi), ũ
2
12(xi) at the set of nodes 

xi = 0 : 0.1 : 1.0 and hence estimated the absolute errors R2
n(xi) =

∣

∣uex(xi)− ũ2n(xi)
∣

∣ for 
n = 8, 12 as shown in Table 4. In Fig. 4, plotted are the graphs the absolute errors R2

n(xi) 
for n = 8, 12.

Example 3 Consider the integral equation,

whose exact solution is given by uex(x) = ex [20]. Using the first technique for 
δ1 = δ2 = 0 with x = 1 in the kernel, we obtain ũ1n(x) for n = 3, 5 . The CPU total time 
for n = 3 was 8.882 s and for n = 5 was 11.830 s. We evaluated the exact solution values 

(57)u(x) = ex − 4.0602+
1

∫

0

u(t)√
1− t

dt; 0 ≤ x ≤ 1,

0

0.2

0 0.10.20.30.40.50.60.70.80.9 1

The Absolute Erorrs for n=3
The Absolute Erorrs for n=5

Fig. 5 The First Technique

Table 6 The absolute errors R2
n(xi) for n = 6, 8

xi R
2

6
(xi) R

2

8
(xi)

0 0.28768 0.095222

0.1 0.28768 0.095222

0.2 0.28768 0.095222

0.3 0.28768 0.095222

0.4 0.28768 0.095222

0.5 0.28768 0.095222

0.6 0.28768 0.095222

0.7 0.28768 0.095222

0.8 0.28768 0.095222

0.9 0.28768 0.095222

1.0 0.28768 0.095222

0

0.5

0 0.10.20.30.40.50.60.70.80.9 1

The Absolute Erorrs for n=6
The Absolute Erorrs for n=8

Fig. 6 The Second Technique
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uex(xi) and the uniformly interpolated polynomials ũ13(xi), ũ
1
5(xi) at the set of nodes 

xi = 0 : 0.1 : 1.0 and hence estimated the absolute errors R1
n(xi) =

∣

∣uex(xi)− ũ1n(xi)
∣

∣ 
for n = 3, 5 as shown in Table 5. In Fig. 5, plotted are the graphs of the absolute errors 
R1
n(xi) for n = 3, 5 . Using the second technique for δ1 = 0, δ2 = 1/250 , we obtain the 

uniformly interpolated polynomials ũ2n(x) for n = 6, 8 . The CPU total time for n = 6 
was 15.317 s and for n = 8 22.591 s. We evaluated the exact solution values uex(xi) and 
ũ26(xi), ũ

2
8(xi) at the set of nodes xi = 0 : 0.1 : 1.0 and hence estimated the absolute 

errors R2
n(xi) =

∣

∣uex(xi)− ũ2n(xi)
∣

∣ for n = 6, 8 as shown in Table 6. In Fig. 6, plotted are 
the graphs of the absolute errors R2

n(xi) for n = 6, 8.

Example 4 Consider the integral equation,

where

(58)u(x) = f (x)+
1

10

1
∫

0

|x − t|−
1
3 u(t) dt; 0 ≤ x ≤ 1,

(59)
f (x) = x2

(

1− x2
)

− 27

30800

[

x8/3
(

54x2 − 126x + 77
)

+ (1− x)8/3
(

54x2 + 18x + 5
)]

,

Table 7 The absolute errors R12(xi) and R15(xi)

xi R
1

2
(xi) R

1

5
(xi)

0 0.057185 0.79416

0.1 0.053333 0.44121

0.2 0.050139 0.23172

0.3 0.047339 0.11599

0.4 0.04469 0.05745

0.5 0.04202 0.030668

0.6 0.039271 0.019345

0.7 0.036508 0.014296

0.8 0.033892 0.011388

0.9 0.03167 0.009474

1 0.030107 0.008288

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.40.50.60.70.80.9 1

The Absolute Erorrs for n=2

The Absolute Erorrs for n=5

The Absolute Erorrs for n=10
Fig. 7 The First Technique
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whose exact solution is given by uex(x) = x2(1− x)2 [21]. Using the first technique for 
n = 2, 5 and δ1 = 0, δ2 = 1/5 , we obtain ũ12(x), ũ

1
5(x) . The CPU total time for n = 2 was 

9.778s and for n = 5 was 15.501s. We evaluated the exact solution values uex(xi) and the 
interpolated solution values ũ12(xi), ũ

1
5(xi) at the set of nodes xi = 0 : 0.1 : 1.0 and hence 

estimated the absolute errors R1
n(xi) =

∣

∣uex(xi)− ũ1n(xi)
∣

∣ for  n = 2, 5 as shown in Table 7. 
In Fig. 7, plotted are the graphs of the absolute errors R1

n(xi) for n = 2, 5 . Using the sec-
ond technique for n = 2, 3, 4 and δ1 = 1/15, δ2 = 0, we obtained ũ22(xi), ũ

2
3(xi), ũ

2
4(xi) 

at the set of nodes xi = 0 : 0.1 : 1.0 . The CPU total time for n = 2 was 10.331  s, for 
n = 3 was 11.713  s, and for n = 4 was 15.699  s. Table  8, contains the absolute errors 
R2
n(xi) =

∣

∣uex(xi)− ũ2n(xi)
∣

∣ for n = 2, 3, 4 at the set of nodes xi = 0 : 0.1 : 1.0 . In Fig. 8, 
plotted are the graphs of the absolute errors R2

2(xi) ,  R
2
3(xi) and R2

4(xi) at xi = 0 : 0.1 : 1.0.

Example 5 Consider the nonsingular Fredholm integral equation of the second kind.

(60)u(x) = e−x +
1

∫

0

ex+tu(t)dt; 0 ≤ x ≤ 1

Table 8 The absolute errors R2
n(xi) for n = 2, 3, 4

xi R
2

2
(xi) R

2

3
(xi) R

2

4
(xi)

0 0.008776 0.008654 8.22E−03

0.1 0.012442 0.011837 1.18E−02

0.2 0.015643 0.014181 1.34E−02

0.3 0.018116 0.015636 1.39E−02

0.4 0.019614 0.016163 1.39E−02

0.5 0.019973 0.015809 1.36E−02

0.6 0.019133 0.014724 1.33E−02

0.7 0.017153 0.013177 1.28E−02

0.8 0.014199 0.011545 1.18E−02

0.9 0.010516 0.010283 9.68E−03

1 0.00637 0.009866 5.57E−03

0
0.01
0.02
0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The Absolute Erorrs for n=2

The Absolute Erorrs for n=3

The Absolute Erorrs for n=4
Fig. 8 The Second Technique
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whose exact solution is given by uex(x) = e−x + 2ex

3−e2
 [35]. Using the first technique for 

δ1 = δ2 = 0 , we obtained uniformly interpolated polynomials  ũ1n(x) for n = 2, 5, 10 . The 
CPU time for n = 2 was 7.987 s and for n = 5 was 12.859 s, and for n = 10 was 36.077 s. 
We evaluated the exact solution values uex(xi) and ũ1n(xi) for n = 2, 5, 10 at the set of 
nodes xi = 0 : 0.1 : 1.0 and then estimated the absolute errors R1

n(xi) =
∣

∣uex(xi)− ũ1n(xi)
∣

∣ 
for n = 2, 5, 10 as shown in Table 9. In Fig. 9, plotted are the graphs of absolute errors 
R1
n(xi) for n = 2, 5, 10 . Using the second technique for n = 2, 5, 10 and δ1 = δ2 = 0 , we 

obtained the uniformly interpolated polynomials ũ2n(x) for n = 2, 5, 10 . The CPU total 

Table 9 The absolute errors R1
n(xi) for n = 2, 5, 10

xi R
1

2
(xi) R

1

5
(xi) R

1

10
(xi)

0 0.00359 0.000164 9.54E−06

0.1 0.00359 5.27E−05 8.34E−07

0.2 0.00359 1.31E−06 −6.85E−07

0.3 0.00359 1.99E−05 4.10E−08

0.4 0.00359 2.81E−05 5.85E−08

0.5 0.00359 3.21E−05 1.37E−07

0.6 0.00359 3.54E−05 2.68E−07

0.7 0.00359 3.92E−05 4.43E−07

0.8 0.00359 4.33E−05 6.28E−07

0.9 0.00359 4.78E−05 7.53E−07

1.0 0.0036 5.29E−05 7.20E−07
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Fig. 9 The First Technique
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Fig. 10 The Second Technique
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time for n = 2 was 8.086 s, for n = 5 was 13.579 s and for n = 10 was 31.443 s. We evalu-
ated uex(xi) and ũ2n(xi) for n = 4, 6 at the set of nodes xi = 0 : 0.1 : 1.0 and hence esti-
mated the absolute errors R2

n(xi) =
∣

∣uex(xi)− ũ2n(xi)
∣

∣ for n = 4, 6 as shown in Table  2. 
In Fig. 2, plotted are the graphs of the absolute errors R2

n(xi) for n = 4, 6. The generated 
interpolated solutions strongly converge to the exact ones when employing either the 
first or second technique (Table 10, Fig. 10).

Example 6 Consider the nonsingular Fredholm integral equation of the second kind.

whose exact solution is given by uex(x) = x [36]. Using formula (10) of the first tech-
nique for δ1 = δ2 = 0 , we obtained the interpolated polynomials  ũ1n(x) for n = 5, 6 . The 
CPU time for n = 5 was 11.474  s and for n = 6 was 11.777  s. We evaluated the exact 
solution values uex(xi) and ũ1n(xi) for n = 5, 6 at the set of nodes xi = −1 : 0.2 : 1.0 and 
then estimated the absolute errors. It turns out that  R1

n(xi) =
∣

∣uex(xi)− ũ1n(xi)
∣

∣ = 0 for 
n = 5, 6 . Using the formulas (26) and (27) of the second technique for δ1 = δ2 = 0 , we 
obtained the interpolated polynomials ũ2n(x) for n ≥ 2 exactly equal to the exact solution. 
The CPU total time for n = 2 was 9.659 s.

Conclusion
We modified the traditional barycentric Lagrange interpolation formula and expressed 
it as a product of four matrices; one of which is the monomial basis function matrix. 
Based on this advanced formula, we presented two techniques for finding the interpolate 
solutions of weakly singular Fredholm integral equations of the second kind. The kernel 
is interpolated twice with respect to both variables and thus has been expressed via five 
matrices. The advantage of the presented techniques is that we can isolate the singular-
ity of the kernel and easily find the interpolant solution in matrix form without applying 
the collocation method. The most important advantage lies in the idea of the given rules 

(61)u(x) = x +
1

∫

−1

(

x4 − t4
)

u(t)dt; −1 ≤ x ≤ 1

Table 10 The absolute errors R2
n(xi) for n = 4, 6

xi R
2

2
(xi) R

2

10
(xi) R

2

15
(xi)

0 0.007216 2.4E−05 1.61E−11

0.1 0.003766 2.75E−05 1.77E−11

0.2 0.003067 2.93E−05 2.01E−11

0.3 0.00459 3.21E−05 2.18E−11

0.4 0.007749 3.58E−05 2.74E−11

0.5 0.011897 3.98E−05 3.69E−11

0.6 0.016318 4.37E−05 5.78E−11

0.7 0.020221 4.8E−05 1.04E−10

0.8 0.022733 5.34E−05 2.02E−10

0.9 0.022887 6.01E−05 4.03E−10

1.0 0.019615 6.52E−05 8.01E−10
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for choosing two different sets of interpolation nodes associated with the kernel’s two 
variables so that the square root of the kernel remains greater than zero and has non-
imaginary values. Thus, the singularity is completely removed. The convergence in the 
mean and the error norm estimation are studied. The interpolate solutions of the first 
four illustrated examples to weakly singular equations are found strongly converge uni-
formly to the exact ones. The convergence of the obtained solutions is faster than those 
obtained by other cited methods. The interpolate solutions of the fifth and sixth exam-
ples to nonsingular equations are found equal to the exact ones. Thus, the efficiency and 
genuineness of the given method are confirmed.
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