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Abstract

This paper proposes an extension of the finite cell method (FCM) to V-rep models, a
novel geometric framework for volumetric representations. This combination of an
embedded domain approach (FCM) and a new modeling framework (V-rep) forms the
basis for an efficient and accurate simulation of mechanical artifacts, which are not only
characterized by complex shapes but also by their non-standard interior structure.
These types of objects gain more and more interest in the context of the new design
opportunities opened by additive manufacturing, in particular when graded or
micro-structured material is applied. Two different types of functionally graded
materials (FGM) are considered: The first one, multi-material FGM is described using the
inherent property of V-rep models to assign different properties throughout the interior
of a domain. The second, single-material FGM—which is heterogeneously
micro-structured—characterizes the effective material behavior of representative
volume elements by homogenization and performs large-scale simulations using the
embedded domain approach.
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Introduction
Functionally graded materials (FGM) are a class of advanced materials that offer the pos-
sibility to exploit various desired physical properties within one component. This allows
manufacturing ’high-performance’ and ’multi-functional’ artifacts which can resist phys-
ical exposures that could not be withstood by a single material [1]. The idea of combining
different materials goes back more than 4000 years—the development of the composite
bow—andhas led tomodern carbonfiber reinforcedpolymers. These compositematerials
change their material properties step-wise and are consequently prone to delamination.
In FGM, on the other hand, material properties vary continuously inside the volume
and avoid material interfaces [2]. Specific material properties are achieved by continuous
changes in the microstructures, grain sizes, crystal structure, or composition of different
materials such as metal, ceramics, polymers, or biological tissues [3,4]. Prototypes, espe-
cially for functionally graded microstructures, can be found in nature, such as in bones,
seashells, skin, or wood [5] or obtained using topology optimization [6–8]. Fields of appli-
cation are, amongst many others, corrosion resistance of chemically exposed components
[9], bone-like lightweight porousmedical implants [10], or heat resistance of load-bearing
parts such as spacecraft thermal shielding, jet turbine blades, or nuclear reactors [3,11].
Additive manufacturing (AM) or 3D printing is a generic term for various production

techniques in which an object is created by layer-wise material deposition. This allows
the fabrication of objects of almost arbitrary shape. AM is the method of choice for the
fabrication of FGM, as (i) it allows to resolve very fine structures, (ii) it can manufacture
internal structures which could not be created with any other method, and (iii) the layer-
wise material deposition gives control over the composition of the processed material,
as well as over the grain size [12,13]. With functionally graded additive manufacturing
(FGAM), it is possible to create different single- and multi-material FGM [14]. Single-
material FGM specimens consist only of one material that changes its properties due to
an adaption of the microstructure, density, or grain size [15]. As AM allows the creation
of free form structures, a single-material FGM in the form of a continuously changing
microstructure can be fabricated with any printable material [16].Multi-material FGMs,
which blend two or more materials into each other within a volume, have recently been
under intensive research [17].A special focuswasplacedonmetal-metal combinations, see
e.g. [4], where steel and titanium-based combinations are investigated. More complex is
the combination ofmaterials of a different kind, such as ceramic-metal compositions [18].
However, these compositions might carry the most potential, as the underlying material
properties are very distinct.
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Material testing is the industry standard to determine the behavior of FGM compo-
nents. Yet, physical test series are often elaborate and expensive. The goal of simulation
supported development is therefore to reduce testing to only calibrating data for function-
ally graded materials and to then numerically analyze different shapes and compositions
of artifacts. Within the scope of this paper, we present two distinct, novel approaches to
perform numerical simulations on both, single- and multi-material FGMs, respectively.
To this end, an analysis-suitable geometrical model needs to be provided which is natu-
rally created with computer-aided design (CAD) and then transformed into a mesh. This
transition process from CAD to an analysis-suitable mesh is error-prone. Depending on
the quality of the model, manual work must be invested to heal the original geometry
before mesh generation can be carried out successfully. Furthermore, the most used CAD
representations, i.e. boundary representation (B-rep) or solid-based procedural models,
are not well suited for an accurate description of FGM. B-rep models represent their
volume implicitly by the boundary surfaces, which are modeled either with linear primi-
tives (e.g. triangles and quads) or with trimmed spline patches [19]. Consequently, B-rep
models offer no possibility to directly represent a heterogeneous material distribution
inside the body. A workaround is to create vector functions that carry the material prop-
erties for each point. These functions can be classified into four different categories: (i)
geometrically-independent, e.g., in Cartesian coordinates, (ii) distance-based, (iii) blend-
ing composition, and (iv) sweeping composition functions (for a detailed explanation refer
to [20,21]). However, except (i), these functions only allow a smooth transition ofmaterial
properties between the different surfaces, which is not suitable for all material distribu-
tions. Geometrically-independent functions, on the other hand, are cumbersome as they
are not related to the object itself. CAD systems using solid-based procedural models
follow the constructive solid geometry (CSG) idea [22]. Here, models are composed of
simple primitives: spheres, cuboids, cylinders, etc. and more complex primitives: sweeps,
lofts, extrusions, solid of revolution, etc. These primitives are combined with the classical
Boolean operations: union, intersection, difference, negation, and their derivations: fillet,
chamfer, holes, etc.Material properties can then easily be assigned to the respective prim-
itives. Of course, this requires special treatment in regions with overlapping primitives
[12]. Furthermore, as primitives are typically provided as implicit functions, they offer,
similar to B-repmodels, no possibility to further resolve the internal volume. Again, vector
functions applied to the primitives are a possible workaround. Another possible geomet-
rical representation is offered by spatial decomposition, such as voxelized models. Here,
each voxel can carry its material properties. These voxel models mostly originate fromCT
scans (e.g. of bones) and provide only a coarse approximation while requiring an extensive
amount of storage capacity. Nevertheless, voxel-based models have been used to resolve
fine microstructures and quasi-continuous changes of the material properties [23,24].
Massarwi and Elber [25] recently proposed a novel volumetric representation technique

(V-rep) for 3D models, which allow full control over the model’s interior. V-reps consist
of trimmed, trivariate B-spline patches which can be combined into V-models using
Boolean operations. By extending the dimension of the control points, it is possible to
assign material parameters directly to the model. This property can be used to model
and simulate multi-material FGM. Potentially critical overlapping regions of the V-model
are resolved by trimming the involved splines and creating new trivariate primitives for
the respective overlapping volume. Due to the non-singularity of trivariate B-splines, V-
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models are predestined for a subsequent simulation using the isogeometric analysis (IGA)
[26].However, a direct application of IGA is often not feasible, since in overlapping regions
the spline patches must be trimmed.Moreover, the respective spline parameterizations—
i.e. the control point meshes, knot vectors, and polynomial degrees—do not coincide at
adjacent faces. Hence, special techniques are required to glue them together, e.g. Mortar
methods or T-splines [27,28]. By contrast, embedded domain methods require no special
treatment of overlapping regions and pose far fewer requirements on the underlying
geometric model.
Apart from the possibility to control the interior of the volume, which can be used

to model multi-material FGM, the V-rep framework also offers the possibility to create
single-material FGM, such as continuously changing microstructures. Although easy to
fabricate with AM, thesemultiscale structures are critical from a simulation point of view.
Due to the complexity of the underlying CAD models, the meshing becomes difficult.
Additionally, attempts to resolve the structure sufficiently accurate may result in over-
refinedmeshes –which in turn lead to an additional but unnecessary computational effort.
This is where numerical homogenization provides an efficient tool to estimate an overall
mechanical behavior of such structures. The basic idea of homogenization is to define a
representative volume element (RVE) which is sufficiently large to represent the overall
material behavior in the specific region [29–31]. In the case of periodic microstructures,
a unit cell can be extracted for further material characterization. Periodic boundary con-
ditions are then applied at their boundaries, which leads to the best possible estimate of
the effective behavior [32,33]. The resulting material characterization can then be used to
simulate a complete structure under complex loading. The computational cost is reduced
considerably by ’smearing out’ the detailed complex geometrical features of a microstruc-
ture and expressing them in terms of the effective behavior. Still, on the microscopic level
of the RVE, the structure needs to be fully resolved in a boundary conforming fashion to
account for all geometrical details. Here, embedded domain methods offer an elegant and
reliable alternative over classical FEA also for non-periodic AM structures [34].
Embedded domain methods, such as the finite cell method (FCM) [35] avoid a tedious

and error-pronemeshing process by embedding the complex geometricalmodel into a fic-
titious domain that can be easily meshed into regular simple elements. Thesemethods are
known under different names, e.g. fictitious domain [36–38], immersed FEM/boundary
[39,40], or Cartesian grid method [41]. The FCM [42] uses besides the embedded domain
approach also high-order finite elements, deploying hierarchical Legendre, spectral, or
B-Spline shape functions [43,44]. Initially developed for 2D and 3D linear elasticity, it was
extended to various fields of applications, such as topology optimization [45,46], local
enrichment for material interfaces [47], elastodynamics and wave propagation [43,48],
or additive manufacturing [49]. Further investigations include efficient integration tech-
niques [50,51], or homogenization [34]. FCMwas successfully applied to various geomet-
rical representations, such as B-rep, CSG [52], voxel domains [53], point clouds [54], and
defective, mathematically invalid B-rep models [55].
In this contribution, three novel methodologies are introduced:

• The FCM is extended to V-models as a new CAD representation form.
• Basedon the trivariate spline descriptionof theV-models, amethod for the simulation

of multi-material FGM is introduced.
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• Finally, a distinct approach is proposed that allows numerical analyses on large-scale
continuously changing microstructures – i.e. single-material FGM—using homoge-
nization.

The paper is structured as follows: “Finite cell method” and “Volumetric representation”
sections provide a brief overview over the FCM and V-reps, respectively. The method-
ologies for the simulation of V-reps, single- and multi-material FGM are described in
“Extension of the FCM to single- and multi-material FGMs” section. “Numerical exam-
ples” section presents and discusses several numerical examples before conclusions are
drawn in “Conclusion” section.

Methods
Finite cell method

In the following, the basic concepts of the finite cell method are briefly summarized for
linear elasticity. A detailed description of the FCM can, e.g., be found in [42]. The FCM
embeds a physical domain�phy into a fictitious domain�fict forming an extended domain
�∪, as illustrated in Fig. 1 for two dimensions. The weak form of the equilibrium equation
for the extended domain �∪ reads as follows

∫
�U

[Lv]T αC [Lu] d�∪ =
∫

�U
vT αb d�∪ +

∫
�N

vT t d�N , (1)

where u is the unknown deflection, v is a test function, L is the kinematic differential
operator and C is the constitutive material tensor. The body load and the prescribed
tractions on the Neumann boundary �N are denoted by b and t , respectively. To resolve
the complex domain correctly, an indicator function α(x) is introduced which weights the
material tensor C

α(x) =
{
1 ∀ x ∈ �phy
10−q ∀ x ∈ �fict

. (2)

In the limit q = ∞, Eq. 1 recovers the standard weak form for �phy. In a finite element-
like discretization, however, it leads to ill-conditioned systems. This can be avoided by
choosing afiniteq (in practiceq = 6 . . . 10) in combinationwith a suitable preconditioning
and/or orthogonalization of the shape functions [56]. This choice introduces a modeling
error [57] but limits the conditioning number of the stiffnessmatrix. Further improvement
on the conditioning can be obtained using preconditioning, orthogonalization of shape
functions, and/or the increase of continuity between the cut cells [58].

Fig. 1 The concept of the finite cell method. The integration on the cut cell requires special quadrature rules
– here indicated by a composed integration on a quadtree reconstruction
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The extended domain �∪ is of simple shape and can be easily meshed into regular cells,
e.g. rectangles in 2D and cuboids in 3D, respectively. These cells can be locally refined
into sub-cells or with respect to the order of the shape function [59,60].

Geometry treatment

The FCM resolves the physical domain �phy (i.e. the geometric model) by the discontin-
uous scalar field α(x), which is then queried during the integration of the systemmatrices
and load vectors. Consequently, the resolution of the geometry’s complexity is shifted
from the discretization (conforming meshing) to the integration level. The only informa-
tion the FCM requires from the geometry is an unambiguous point inclusion statement,
i.e. it must be possible to decide for any point x whether x ∈ �phy or x ∈ �fict . Due to
the discontinuity of α(x) on cut cells, the integration needs to be carried out using special
quadrature rules. Common variants are composed integration on a space-tree reconstruc-
tion (see Fig. 1), smart quadtree/octree, ormoment fitting [61–63]. Another approach uses
dimensional reduction, i.e. the integration is not performed over the entire domain, but
only along the boundary [64].

Boundary conditions

As the boundary of the physical domain �phy typically does not coincide with the
edges/faces of the finite cells, essential (Dirichlet) boundary conditions need to be applied
in a weak sense. For this, several methods have been investigated—such as the Nitsche
method, Lagrange multipliers, and the penalty method [65–68]. Natural (Neumann)
boundary conditions are applied on�N following Eq. (1). Homogeneous natural boundary
conditions are automatically resolved by α(x) ≈ 0. Inhomogeneous natural and essential
boundary conditions require an explicit integrable boundary description, which is either
provided by the geometrical model or extracted directly from the volume using, e.g., the
marching cubes algorithm, see e.g. [69].

Volumetric representation

The V-rep framework [25] provides methods and algorithms for the construction of V-
models by combining simple (e.g. cylinder, sphere, etc.) or complex primitives (e.g. ruled
primitives or solids of revolution) with the Boolean operations, thus following the idea
of constructive solid modeling. Furthermore, it is possible to migrate spline-based B-rep
models to V-rep models. The V-rep framework is embedded in the Irit geometry library
[70], developed by Elber et al. Irit provides a vast amount of various geometric modeling
and analysis functionalities, and it can be accessed as a C(++) library, via a scripting
language, or graphically with the GuIrit CAD environment [71].

Trivariate B-splines

A trivariate B-spline is a parametric function that allows to span a volume over a three-
dimensional parameter space. It is typically represented as follows

V (u) =
l∑

i=1

m∑
j=1

n∑
k=1

Bi,p(u)Bj,q(v)Bk,r(w)Pi,j,k , (3)
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Fig. 2 High-level primitives: a extrusion, b ruled solid, c volume of revolution, d boolean sum, and e
sweep/loft

Fig. 3 Non-singular primitives composed of trivariate B-splines: a A cylinder is composed by five extruded
solids, whereas b a cone is composed of five ruled solids. c A torus is constructed using five solids of
revolution, and d a sphere is composed of six ruled solids and one cuboid in its center

where V (u) is a point inside the volume and u = (u, v, w)T the corresponding three-
dimensional parameter position in the parameter spaceu ∈ U×V×W ⊆ R

3.Bi,p denotes
the ith one-dimensional B-spline basis function of polynomial degree p and Pi,j,k ∈ R

k are
the l × m × n control points. The dimension of the control points is k = 3 + s, where
k = 3 corresponds to the three geometric coordinates xT = [x, y, z]. Further information
can be represented by additional dimensions s > 0.

V-rep primitives

Apart from the trivial case of a cuboid, the V-rep framework offers a variety of both high-
level and simple primitives. Implemented are several high-level primitive constructors, all
of which yield one single trivariate patch (see Fig. 2):

1. Extrusion: A surface is extruded along a vector.
2. Ruled solid: A volume is defined as a linear interpolation between two surfaces.
3. Solid of revolution: A volume is constructed by rotating a surface around an axis.
4. Boolean sum: A volume is created from six boundary surfaces [72].
5. Sweep/Loft: A sweep or loft interpolates several surfaces along a sweeping path.

Simple primitives—such as spheres, cylinders, tori, and cones – can not be represented
by a single trivariate patch without introducing singularities (e.g. at the mid axis of a
sphere, the Jacobi matrix vanishes det(JV (r = 0)) = 0.) To this end, singular primitives
are composed of several non-singular trivariate patches (see Fig. 3).

V-model construction

A trivariate B-spline is limited to a cuboid topology. To represent general volumetric
shapes, so-called 3-manifold V-cells νiC are introduced which correspond to trimmed
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Fig. 4 V-Model created as the union of a trivariate cuboid and a trivariate, non-singular cylinder. The
intersected volume yields two V-cells (marked in red) which are constructed based on the trimming surfaces
(highlighted in blue)

trivariate B-splines. A V-model Vm is composed of nV-cells: Vm = ⋃
i ν

i
C , i ∈ {1, . . . , n}.

These V-cells originate firstly from the primitives that constitute the CADmodel. NewV-
cells occur due to the combination of the Boolean operations in the regions of overlapping
primitives. Here, trivariate B-splines are trimmed at intersecting surfaces, and, depending
on the Boolean operation, the intersection volume is then remodeled from the trimming
surfaces using the Boolean constructor (see Fig. 4). Consequently, theV-cells of a V-model
are non-intersecting νiC ∩ ν

j
C = ∅ , ∀i 
= j , i, j ∈ {1, . . . , n} and the parametrizations of

the new ’intersection’ V-cells are different from their parent primitives. This makes the
use of IGA more complex.
V-cells store additional topological and adjacency information, which allows an efficient
model inquiry.AdjacentV-cells share common trimming/boundary surfaces.Analogously
to B-Rep, the boundary of the V-model ∂Vm forms a closed 2-manifold.

Discussion and results
Extension of the FCM to V-reps

In the context of the finite cell method, at first, without considering functionally graded
materials, the V-model only needs to provide a point inclusion test. To this end, an inverse
mapping is carried out on each V-cell.

f : x = νiC (u) → u (4)

As splines can generally not be inverted analytically, the corresponding parameter position
u must be determined iteratively using the Newton-Raphson algorithm. Yet, one should
note that—since the splines are regular, i.e. the Jacobian never vanishes—a solution is
always unique if one exists. In the case x ∩ νiC 
= ∅ a parameter position can be found in
the V-cell νiC and the respective point x is inside the V-model. The number of required
Newton-Raphson iterations for the inverse mapping can be substantially decreased pro-
viding a good guess as an initial value. This is efficiently exploited by the finite cell method
as, due to the Cartesian grid-based data structure, consecutive integration points are very
often geometrically adjacent. Therefore, the last inner point on each V-cell is cached and
used as an initial guess for the next query.
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Since, the underlying Irit library [70] offers already a robust point inclusion test, the
extension of the FCM to V-models is straight-forward. It is noteworthy that—in contrast
to IGA—trimmed splines, as well as non-coinciding spline parameters at adjacent faces,
require no special treatment since the adaptive quadrature rules automatically recover
the actual shape of the geometry.

Extension of the FCM to single- andmulti-material FGMs

TheV-Rep framework provides two different ways to realize functionally gradedmaterials
which can be produced by additive manufacturing techniques: (a) the material properties
can either be encoded directly into the volume of the V-cells (see “Analyzing multi-
material FGM with the finite cell method” section), which is perfectly suited to model
multi-material FGMs, or (b) an FGM can be created in a constructive manner in the form
of a continuously changing mircostructures, which corresponds to single-material FGMs
(see “Analyzing multi-material FGM with the finite cell method” section).

Analyzingmulti-material FGMwith the finite cell method

A simulation of multi-material FGM using the FCM requires— apart from the point-
inclusion statement—also the corresponding material properties at any location. To this
end, the spline-based description of theV-cells—as the smallest, non-intersecting building
blocks—is extended to also carry material information.
V-Rep material representation Material properties such as Young’s modulus, Poisson’s
ratio, thermal conductivity, density, etc. can easily be represented on the V-cells by simply
extending the dimension of the control points R

3+s, with s > 0 being the additional
material parameters (see Eq. (3)). Consequently, evaluating the V-cell yields, in addition
to the geometric coordinates, also the respective material values

V T = [x, y, z,m1, . . . , mσ , . . . , ms] ∈ R
3+s . (5)

As an example, consider a control point that carries additional material properties for the
Young’s modulus E, Poisson’s ratio ν, and thermal conductivity κ as needed for Exam-
ple 3.3.2: PT

i,j,k = [x, y, z, E, ν, κ]i,j,k .
The material properties of a V-cell, created from the overlap of two or more trivariate

B-splines carrying different material information, require additional handling. Either one
of the initial trivariate B-spline can be set prevailing and, thus, its properties are inherited
to the V-cell, or the material properties are interpolated by some sort of blending scheme.
For detailed information refer to [25].
Spline based material approximation Inside a patch, splines are typical of higher continu-
ity, which renders them perfectly suitable for modeling smooth geometries. However, this
restricts the material function to be of the same continuity. A remedy to also represent
C0 or discontinuous material distributions is given by knot-insertion, as the continuity
depends on themultiplicity of the knotsCp−m, where p is the polynomial degree andm the
number of multiple knots. Naturally, knot-insertion also reduces the potential continuity
of the geometry. However, the original higher continuity is preserved in a geometrical
sense.1 Hence, the model keeps its geometrical shape, whereas the material is allowed to

1Remark: This is only the case for the undeformed, initial CADmodel. The deformed shape can be ofCp−m-continuity,
for instance, a kink in the case of C0 .
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Fig. 5 One-dimensional least squares approximation of a hypothetical sinusoidal material function
mσ (x) = sin(2πnpx), with np = 2.5 being the number of periods, yields the material ’coordinates’ μσ

i . Note
that the rather large deviation between the curves comes from the fact that the locations (i.e. x−coordinates)
of the material control points as well as the knot vector are fixed

havematerial kinks, or even to be discontinuous. Nevertheless, due to the global influence
of the position and multiplicity of the knots, splines are not the method of choice to rep-
resent highly discontinuous material distributions, as e.g. underlying voxel data provided
by CT-scans.
Given a sufficiently smooth material distribution, the material ’coordinates’ of the con-

trol points can be obtained using least-squares approximation (see Fig. 5). For each mate-
rial property, the least-squares problem reads

min
μσ

nLS∑
λ=1

r2λ = min
μσ

‖V (uλ,μσ ) − f σ
m (xλ) ‖22 = min

μσ
‖A(uλ)μσ − f σ

m (xλ) ‖22 , (6)

where nLS is the number of sample points and μσ = μσ
i,j,k ∈ R

l·n·m are the minimization
variables (see Eq. (3) for l, m, n). The least squares problem is then solved for eachmaterial
function f σ

m and the respective material ’coordinate’ μσ , σ ∈ [1, s] of the control mesh
Pi,j,k = [

x, y, z,μ1, . . . ,μσ , . . . ,μs]T
i,j,k . Matrix A ∈ R

ν×(l·n·m) contains the spline basis
functions. The sample points are evaluated in the parameter space uλ = [u, v, w]Tλ ∈ R

3.
Consequently, the material function needs to be evaluated in the same space (see Eq. (3))

f σ
m (x) = f σ

m (V (u)) . (7)

Analyzing single-material FGMwith the finite cell method

Single-material FGM structures change their material properties due to adaptions in the
microstructure, density, grain size, etc. A prominent example in nature is the trabecular
bone, where the size and alignment of thin rods and plates of bone tissue create stiffness
trajectories that follow the principal stresses for the most common load cases [73].
Today, additive manufacturing (AM) offers the possibility to create similarly complex

structures. To this end, AM uses porous infill structures to support the outer hull. How-
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Fig. 6 Functionally graded microstructure: b Three different anisotropic tiles, with a changing stiffer
direction, are used to tile a a rotating ruled volume. c The entire resulting microstructure exhibits a
continuously changing anisotropic stiffness

ever, this infill is typically a repetitive lattice and is either not taken into account for
the load transfer, or it is assumed to be isotropic [74]. Nonetheless, recent approaches
in the field of topology optimization try to exploit the contribution of the infill to the
load transfer [75]. Problem-fitted complex 3D anisotropic microstructures can reduce the
printing time and material consumption substantially and at the same time improve the
load-carrying properties and buckling behavior.
Gradually changing microstructure The V-rep framework offers the possibility to create
complex aniso- tropic microstructures with its tiling operation. Hereby, copies of a unit
structure are consecutively created inside a base volume. Following the shape of the base
volume and by using layers of different unit cells, a complex constructive FGM can be
created. As the resulting microstructure is composed of several V-cells, it is again a V-
model. Naturally, each V-cell can again represent a heterogeneous material distribution
within its volume. Even for complex tile-based structures, like the example shown in
Fig. 6c, the point inclusion test can be carried out by inverse mapping as described in
“Extension of the FCM to V-reps” section. Yet in case of single-material structures, it
turns out that a conversion into an auxiliary B-rep and a consecutive ray tracing based test
(see [76]) is computationally more efficient. In our implementation, the B-rep surface is
subdivided into a fine triangular mesh and stored in a kd−tree [77]. Certainly, in contrast
to the inverse mapping on trivariate B-splines, the surface triangulation causes a further
approximation error, which can yet be controlled by refining the surface subdivision.

Simulation of large-scale single-material FGM with the FCM Detailed geometrical
features of microstructures require a fine numerical resolution to achieve reliable sim-
ulation results. Hence, large-scale structures necessitate the use of high-performance
computers, or might even not be computable at all. To reduce the computational cost
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Fig. 7 Continuously changing microstructure with different representative volume elements. The material
properties in-between can be interpolated

and thus allowing the computation of large microstructures, a numerical homogenization
can be used to evaluate a macroscopic mechanical behavior under specified loadings. The
basic idea of this method is to approximate the solution of a macroscopic boundary value
problem by solving less demanding microscopic problems [31]. This idea relies on the
existence of a representative volume element (RVE), which is a microstructural domain
that is large enough to represent macroscopic behavior and small enough to ensure the
scale separation. Themechanical quantities can then be transferred from themicro- to the
macro-scale by using theHill-Mandel condition, which is also called ‘macro-homogeneity
condition’. This mean-field numerical homogenization provides reliable estimates for the
effective mechanical behavior if appropriate boundary conditions are chosen. For the
herein considered microstructures that are created with Irit’s tiling operation, periodic
boundary conditions provide the best effective material properties.
Certainly, a functionally graded microstructure cannot be represented by one single

RVE.However, since the parameter-based construction plan of the FGM is known apriori,
it is sufficient to compute the effective material tensors C∗

i for several ’representative’
RVEs (see Fig. 7). At any realization in-between, the material is then be interpolated from
corresponding adjacent representative tensors C∗

i .
For themicrostructures, considered in this paper, the RVEs correspond to the constituting
unit tiles, which can have different properties, for instance, a stiffer direction, a rotation
around someaxis, or amaterial composition.All these properties are definedusing suitable
construction parameters. The following approach then allows the efficient computation
of large-scale functionally graded microstructures with the FCM:

• Using the parametric description of the microstructure, several representative unit
tiles are selected in different configurations.

• For the unit tiles, the effective material tensorsC∗
Ti are computed with a combination

of numerical homogenization and the finite cell method [34] and stored in a look-up
table (see Example 3.3.4, Table 2).

• During the simulation of a large-scale FGM microstructure, the effective material
tensor at each integration point is determined by an interpolation of the values from
the look-up table (see Example 3.3.5).
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Based on the model of Example 3.3.3 this approach is illustrated in the Examples 3.3.4
and 3.3.5.

Numerical examples

To demonstrate the variety of simulatable functionally graded materials using a combi-
nation of V-reps and the FCM, five examples are presented. The first example serves as
a verification of the extension of the FCM to multi-material FGMs. To this end, a linear
elastic simulation of a simple cuboid with a prescribed material distribution is performed.
The second example, a coupled heat, thermo-elastic simulation of a curved thermal pro-
tection tile, underlines the applicability to examples of engineering relevance. The third
example shows a simulation of a fully resolved single-material FGM—i.e. a continuously
changing microstructure. In the fourth example, the underlying tiles of the third example
are evaluated in terms of a homogenization, which are then used in the fifth example to
perform a simulation on a large-scale homogenized single-material FGM.

Example 1: Cuboid with sinusoidal material distribution

As a benchmark problem, the cuboid with varying material distribution in z−direction
is chosen.2 The cuboid is a trivariate B-spline and is created with GuIrit [71]. As the
spline basis functions are initially linear in each direction, they are not able to repre-
sent the material function E(z). For this reason, a degree elevation to r = 3 and subse-
quent multiple knot insertions in z−direction were carried out, yielding a knot-vector of
W = [0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1]. The control points in z−direction are depicted
in Fig. 8a. The cuboid has assigned a constant Poisson ratio of ν = 0.3. The functionally
graded Young’s modulus is given as an analytical function

E(z) = 106 + 5 · 104 · sin(zπ ) . (8)

The material ’coordinates’μE
i of the control points are computed using least squares with

nLS = 100 sample points, according to Eq. (6) (see Figs. 8b, and 9a)

μE = [100000, 131438, 185772, 46415, 46415, 185772, 131438, 100000] . (9)

For the simulation, the cuboid is embedded into a slightly larger fictitious domain (±0.1
in each direction, ergo 1.2× 1.2× 3.2) and discretized by 6× 6× 16 finite cells deploying
hierarchic Lengendre shape functions. Homogeneous Dirichlet boundary conditions are
applied in x−direction on the left, in y−direction on the front, and in z−direction on the
bottom surface using the penalty method. The cuboid is loaded on the top surface with a
traction of f = −1000 in z−direction.
To prove the validity of the FCM for multi-material FGM, a convergence study is car-

ried out. The polynomial degrees of the Legendre ansatz function are increased from
p = 1 . . . 8 and the corresponding strain energies are compared to a reference solution
Uref , whichwas computed by a boundary-conforming p−FEManalysis. Tominimize inte-
gration errors, a composed integration is used, which can exactly recover the exact shape
of the cuboid – similar to the smart octree [61]. To compare the convergence behavior of

2Remark: This benchmark example is chosen to be of simple shape to able to obtain a highly precise reference solution.
Yet, as the structure is embedded in a larger domain, the solution is non-trivial for immersed boundary methods.
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Fig. 8 a Dimensions of the cuboid. b Least squares fitting of E(z) yielding the material coordinates μE
i

Fig. 9 a Young’s modulus evaluated on integration points inside the cuboid and in the fictitious domain. b
Relative error in the strain energy for polynomial degrees p = 1. . .8

the FCMwith the standard FEM, two additional convergence studies using h−refinement
are carried out on boundary conforming FEM discretizations, with polynomial degrees of
p = 1 and p = 2, respectively.
As depicted in Fig. 9b, the FCM shows a pre-asymptotic exponential convergence until

it reaches the numerical precision of the underlying Irit library at p = 4, whereas the
h−studies show algebraic convergence—as expected.3 Obviously, in terms of degrees of
freedom, the FCM outperforms classical h−versions.
Figure 10 shows the displacements and the vonMises stresses of the deformed cuboid. As
expected, the regions of lower stiffness are undergoing a larger deformation.

3Remark: Since the relative error is stated in percent, the actual precision is the order of 10−7 . This corresponds to the
accuracy of the geometric modeler Irit which uses single precision.
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Fig. 10 a Displacements and b von Mises stresses warped around the undeformed cuboid (grey block)
embedded into the finite cell mesh. c Cross section (aligned to the blue frame) showing the von Mises
stresses inside the volume. The deformation is scaled by a factor of 20

Example 2: Curved thermal shielding tile

The second example demonstrates the applicability for practical applications. To this
end, three curved thermal shielding tiles are simulated. Such tiles are needed for high-
temperature applications, such as re-entrance shielding for spacecraft or the inner coating
of fusion power plants. The tiles consist of a load-carrying zone made of titanium Ti and
an insulating zone made of porous silica SiO2 with a porosity of 70%. Both materials
have similar melting points of �Ti = 1.668◦C for titanium and �SiO2 = 1.710◦C for
silica, which allows a fabrication with additive manufacturing using e.g. powder bed laser
melting.
Special focus is laid on the continuity of the transition zone between these materials.

The first discontinuous tile consists of two distinct domains where both domains are
assumed to be homogeneous titanium and silica, respectively, i.e. there is no transition
zone. Hence, the first tile is not a FGM, but a composite material. The material is changed
C0−continuously in the second tile, andC1−continuously in the third tile. To evaluate the
stresses under aheat load, a coupled simulation is carriedout.An initial thermal simulation
provides the temperature distribution, which is then used to apply thermal strains for the
subsequent thermo-elastic simulation. Consequently, the model will deform due to the
different thermal expansion ratios. This deformation is, however, hindered by the different
Young’s moduli in the transition zone, then leading to internal stresses.
The underlying V-model consists of one V-cell and was generated by extruding a curved

two-dimensional B-spline surface 5 cm in z−direction. The control point mesh of the
curved surface is defined as follows4

Psurface
i =

⎡
⎢⎣
0 0 0 0 4 4 7 7 8 8 14 14 12 12 21 21
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
0 0 7 7 0 0 7 7 0 0 0 0 0 0 0 0

⎤
⎥⎦ . (10)

The knot vectors in x− and y− direction read U = V = [0, 0, 0, 0.5, 1, 1, 1]. Conse-
quently, the surface has polynomial degrees of px = py = 2.

4Remark: Blank columns indicate a new row of control points in x−direction.
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Fig. 11 Model dimensions (in cm) and control point mesh of the discontinuous tile in a isometric view, and
b from the back side

The extrusion yields a V-cell with a polynomial degree of pz = 1 and a knot vector
W = [0, 0, 1, 1]. Thus, the volumetric control point mesh consists of twice the initial
mesh of the surface, where the second half of the control points have an offset of dz = 5
cm. For the C1− continuous tile, the polynomial degree in z−direction is increased to
pz = 2. To construct the discontinuous tile, the V-model was split at �zdiv = 1.25 cm
using knot-insertion. The knot vectors and the offsets of the control points in z−direction
for all tiles read as follows

WDiscont. = [0, 0, 0.25, 0.25, 1, 1] (11)

WC0 = [0, 0, 0.15, 0.35, 1, 1] (12)

WC1 = [0, 0, 0, 0.05, 0.29, 0.5, 1, 1, 1] (13)

dzDiscont. = [0, 1.25, 1.25, 5] (14)

dzC0 = [0, 0.75, 1.75, 5] (15)

dzC1 = [0, 0.2, 0.8, 1.7, 3.6, 5] . (16)

The resulting material distributions are depicted in Fig. 12 exemplary for the Young’s
modulus. The other material properties are distributed similarly. The parameters for the
B-splines were chosen such that the integral of the material over the thickness is equal for
all three tiles. Figure 11 shows the outer dimensions of the tiles in cm.
To perform the coupled simulation, four different material parameters are required for

bothmaterials (see Table 1). The properties were taken fromAZOMaterials and averaged
if necessary [78].Due to the porosity of the silica, the respectiveYoung’smodulusESiO2 and
the thermal conductivity κSiO2 must be adapted. This is implemented with the Gibson-
Ashby criteria, which provide simple formulas to estimate the properties based of the
porosity [79,80]

κr = (1 − φ)3/2 , (17)

Er = (1 − φ)2 , (18)

where φ is the porosity (in this example φ = 0.7) and κr and Er are the weighting factors
for the thermal conductivity and Young’s modulus, respectively. In contrast, the Poisson’s
ratio νSiO2 and the thermal expansion αSiO2 require no adjustment [81].
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Fig. 12 Material distribution of the Young’s modulus a inside the C0−continuous tile and b plotted at x = 5
cm, y = 25 cm over the thickness

Table1 Material properties of titanium and porous silica for the coupled simulation

Property Symbol Titanium Silica (70% porosity) Units

Young’s Modulus E 11, 600 634 kN/cm2

Poisson’s Ratio ν 0.36 0.17 –

Thermal conductivity κ 0.216 2.3 · 10−3 W/cmK

Thermal expansion α 8.6 · 10−6 6.5 · 10−7 1/

The simulation uses 16 × 23 × 9 finite cells with a polynomial degree of p = 3 and
an integration subdivision depth of n = 3. For the preceding heat simulations, Dirichlet
boundary conditions are applied with a prescribed heat of 1000◦C on the top surface and
20◦C on the bottom surface. The resulting temperature inside the tiles is then transferred
as a body strain to perform a thermo-elastic simulation. Additionally, the tiles are clamped
at the bottom surface. Since the higher-order shape functions are not able to represent
jumps in the material distribution, the simulations of the tile with the discontinuous
material distribution are carried out on two separate meshes – one for each domain –,
which are ’glued’ together in a weak sense along their coupling surface, using the penalty
method [82]. Both meshes are equally discretized with 16 × 23 × 9 finite cells. Thus, on
eachmesh, onlymaterial jumps from the physical into the fictitious domain appear, which
can be decently represented by the FCM.
To resolve the critical regions, the finite cell mesh is refined using h−refinement. One

h−refinement step yields eight subcells for each (refined) finite cell, which can then be
further refined in a subsequent refinement step. Certainly, this kind of refinement intro-
duces hanging nodes between refined and unrefined cells. The resulting incompatibilities
between the shape functions are resolved by the multi-level hp-method [60]. For the dis-
continuous tile, both meshes are refined twice towards the coupling surface – meaning
the respective finite cells are refined with aminimum of 15 and amaximum of 64 subcells.
For the continuous tiles, all finite cells that are intersecting the respective transition zones
are refined once (see Fig. 13).
To visualize the results inside the tiles, a cut through the model is investigated at

x = 5 cm. Figure 14 shows the temperature distribution and displacements of the
C0−continuous tile. The temperature and the displacement distributions are almost iden-
tical for all tiles. More relevant are the stress distributions. As can be seen in Fig. 15, a



Wassermann et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:49 Page 18 of 33

Fig. 13 Discretizations of a the discontinuous tile: The mesh is refined twice around the coupling surface
(yellow), which divides the upper (light blue) and lower domain (purple). b The C0−continuous tile: The FCM
mesh is refined once in the transition zone (cells in blue are unrefined, and cells in red are refined once). The
grey mesh in the background corresponds to the octree for the integration. The C1−continuous tile is
meshed and refined analogously

Fig. 14 C0−continuous tile: a Temperature distribution and b displacements warped by a scaling factor of
1000

Fig. 15 Von Mises stresses of the a discontinuous and b C0−continuous thermal shielding tile. The stress
distribution of the C1−continuous tile looks very similar to the C0−continuous tile

stress concentration occurs at the coupling surface of the discontinuous tile. Figures 16
and 17 plot the temperature distribution, displacements, and stresses over the height at
x = 5 cm and y = 25 cm.
The discontinuous material distribution yields a C0−continuous heat and displace-

ment distribution, which then entails a discontinuous stress distribution with amaximum
peak at the interface region. This is critical as it will potentially cause delamination.
The C0−continuous material distribution, on the other hand, ensures a continuous and
much smaller stress distribution throughout the entire domain. This effect can be aug-
mented further by using a C1−continuous material distribution. Continuous materials,
on the other hand, involve a larger heat flux. For the 1D case, the thermal resistance is
reduced to approximately 86% for the C0−continuous and approximately 75% for the
C1−continuous material with respect to the discontinuous material distribution.
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Fig. 16 Comparison of a the temperature and b the displacements of the discontinuous and continuous
tiles at x = 5 cm, y = 25 cm over the thickness

Fig. 17 Comparison of the von Mises stresses of the discontinuous and continuous tiles at x = 5 cm, y = 25
cm over the thickness

Example 3: Anisotropicmicrostructure

The third example addresses the second kind of functionally graded materials—namely
single-material FGM. For this, a linear-elastic simulation of the continuously chang-
ing microstructure, depicted in Fig. 6, is carried out. It resembles a porous, foam-like
microstructure stiffened by an outer shell. To generate this model, a continuously chang-
ing microstructure is created with GuIrit. Different unit tiles—each composed of seven
trivariate B-splines—are used to tile a parametrically described ruled body (see Fig. 2). The
unit tiles have a growing stiffness from bottom to top, realized by an increasing diameter
of the rod in x−direction.5 The resultingmicrostructure consists of 6×6×9 unit tiles and
an overall number of 2268 trivariate B-splines, or V-cells. A direct simulation on this V-
model leads to unreasonably high runtimes, due to the complexity of the inversemapping.
However, since in this example, the FGM is notmodeled within the individual V-cells, but
as a single-material continuously changingmicrostructure, it is possible to carry out a sim-
ulation significantly faster on an auxiliary B-rep model. To this end, the B-spline surfaces

5Remark: Due to the rotation of the ruled body, the stiffer direction is changing from bottom to top.
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Fig. 18 a Selection of the computational domain (turquoise). An outer shell (red) is embedded into a
microstructure. b The intersection of the microstructure with �∪ leading to the physical domain �phy .
Boundary conditions are applied to the highlighted intersection surfaces

of the V-cells are extracted and inner surfaces, between consecutive V-cells, are deleted.
The resulting B-rep model consists of 8064 B-spline surfaces. With a B-rep CAD tool
(Rhinoceros®) the shell is added as a B-rep volume and combined with the microstructure
using the Boolean union operation. Subsequently, the microstructure on the outer side of
the shell is trimmed away using the trimming operation with the outer surface of the shell
volume. Finally, the computational model is extracted with a Boolean intersection with
the computational domain. Figure 18 depicts the selection of the computational domain
and the final model with the respective surfaces for the boundary conditions.
For the simulation, homogeneousDirichlet boundary conditions are appliedon the cutting
planes of the shell (see Fig. 18b—highlighted in turquoise). The top and bottom surface
fix the displacements in x− and z−direction, and the front and back surface restrict
the displacements in x− and y−direction. Dirichlet boundary conditions of �u = 0.1
are applied on the outer surfaces on the left side (see Fig. 18b—highlighted in purple).
All boundary conditions are enforced with the penalty method. A Young’s modulus of
E = 100GPa and a Poisson’s ratio of ν = 0.3 are chosen for ∀ x ∈ �phy. The simulation
uses 20 × 20 × 20 finite cells, employing Legendre polynomials of degree p = 4. The
subdivision depth of the octree for the integration is set to n = 4.
Figures 19 and 20 show the displacements and the von Mises stresses. Certainly, such

a fully resolved simulation is slower than the numerical homogenization presented in
“Analyzing single-material FGM with the finite cell method” section—especially because
homogenization in the linear case allows the creation of a lookup table. However, the
discussed fully resolvedmodel can be used to verify the homogenization. This is addressed
in the following Examples 3.3.4, and 3.3.5. Note, since the shape functions are badly
suited to represent holes inside one finite cell, meaning ’material–void–material’ [83],
the microstructure needs to be resolved with many finite cells. A remedy can be local
enrichment as presented in [84].
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Fig. 19 Displacements

Fig. 20 Von Mises stresses

Example 4: Material characterization database for unit tiles

A fully resolved numerical simulation of a microstructure – as presented in Exam-
ple 3.3.3—is computationally very demanding in both memory consumption and sim-
ulation time. For large-scale microstructures (as in Example 3.3.5), fully-resolved com-
putations need to be carried out on a high-performance computer, or might even be
not applicable at all. A remedy is offered by homogenization. As explained in “Analyz-
ing single-material FGM with the finite cell method” section, for a functionally graded
microstructure it is sufficient to compute the effective material tensors C∗

Ti only for sev-
eral representative unit tiles, and interpolate thematerial properties in-between, according
to the parametrization of microstructure.
Two parameters are used to characterize the unit tiles in the Examples 3.3.3, 3.3.4 and

3.3.5, the diameter of the rod in x−direction and rotation angle around the z−axis. To
compute the respective microscopic material behaviors, homogenization simulations are
carried out for unit tiles with three different configurations of the diameter of the rod
in x−direction (Ø 0.2 mm, Ø 0.3 mm, and Ø 0.4 mm), yielding the unrotated, effective
material tensors C∗

Ti.
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Fig. 21 Homogenization simulation with periodic boundary conditions: displacement field of the warped
tiles with a scale factor s = 10

For the homogenization simulations, the material of the microstructure is considered
to be steel with a Young’s modulus of E = 210GPa, and a Poisson’s ratio of ν = 0.3. Each
tile is discretized with 11×11×11 finite cells of polynomial degree p = 5. For the domain
integration, the moment-fitting approach [62] with the depth of an underlying octree of
d = 6 is chosen. As the structures under consideration are, in good approximation, geo-
metrically periodic, periodic boundary conditions are the natural choice for transferring
the macroscopic quantities to the microscopic unit cells.
Figure 21 shows the displacement fields under shear load for the unit tiles in the unro-

tated configuration. The resulting homogenizedmaterial tensors for the tiles 1, 2 and 3 are
summarized in Eqs. (19), (20) and (21), respectively. One can identify different material
behaviors, which is expected due to the geometrical features of the respective unit tiles.
The orientation and the thickness of the rods has an important effect on the final material
behavior. Tile 1 shows a cubic macroscopic material symmetry with three independent
elasticity coefficients [85], namely C11, C12 and C44

C∗
T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7895.81 432.89 432.89 0.00 0.00 0.00
432.89 7895.81 432.89 0.00 0.00 0.00
432.89 432.89 7895.81 0.00 0.00 0.00
0.00 0.00 0.00 200.71 0.00 0.00
0.00 0.00 0.00 0.00 200.71 0.00
0.00 0.00 0.00 0.00 0.00 200.71

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Due to the stiffer direction in x−direction, tile 2 and 3 show a tetragonal effective material
symmetry with C11, C22, C44 , C55, C12 and C23 as independent entries:

C∗
T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

18246.81 1026.56 1026.56 0.00 0.00 0.00
1026.56 11066.80 659.81 0.00 0.00 0.00
1026.56 659.81 11066.80 0.00 0.00 0.00
0.00 0.00 0.00 769.49 0.00 0.00
0.00 0.00 0.00 0.00 590.69 0.00
0.00 0.00 0.00 0.00 0.00 769.49

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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C∗
T3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

33809.00 2037.73 2037.73 0.00 0.00 0.00
2037.73 14770.28 997.14 0.00 0.00 0.00
2037.73 997.14 14771.08 0.00 0.00 0.00
0.00 0.00 0.00 2022.10 0.00 0.00
0.00 0.00 0.00 0.00 1375.86 0.00
0.00 0.00 0.00 0.00 0.00 2022.17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The material tensors C ′
Ti for the second changing parameter—the rotation around the

z−axis—can be computed by a coordinate transformation, and thus require no homoge-
nization simulations. The Bond-Transformation matrices [86] can be used to rotate the
effective elasticity tensor by a matrix-matrix multiplication. Assume the following order-
ing of the macroscopic stresses σM

ij and strains εMij in the Voigt notation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σM
11

σM
22

σM
33

σM
12

σM
23

σM
13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗
11 C∗

12 C∗
13 C∗

14 C∗
15 C∗

16
C∗
12 C∗

22 C∗
23 C∗

24 C∗
25 C∗

26
C∗
13 C∗

23 C∗
33 C∗

34 C∗
35 C∗

36
C∗
14 C∗

24 C∗
34 C∗

44 C∗
45 C∗

46
C∗
15 C∗

25 C∗
35 C∗

45 C∗
55 C∗

56
C∗
16 C∗

26 C∗
36 C∗

46 C∗
56 C∗

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εM11
εM22
εM33
εM12
εM23
εM13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

Then, the transformation of the effective elastic tensor reads as follows

C ′ = MC∗N−1 , (23)

where C∗ is the effective elasticity tensor, C ′ is the effective elasticity tensor in rotated
coordinates, andM andN are the Bond-stress and the Bond-strain transformationmatri-
ces, respectively. For the rotation around the z−axis, the Bond strain and stress matrices
are defined as follows

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2(α) sin2(α) 0 sin(2α) 0 0
sin2(α) cos2(α) 0 −sin(2α) 0 0

0 0 1.0 0 0 0
− sin(2α)

2
sin(2α)

2 0 cos(2α) 0 0
0 0 0 0 cos(α) −sin(α)
0 0 0 0 sin(α) cos(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2(α) sin2(α) 0 sin(2α)
2 0 0

sin2(α) cos2(α) 0 − sin(2α)
2 0 0

0 0 1.0 0 0 0
−sin(2α) sin(2α) 0 cos(2α) 0 0

0 0 0 0 cos(α) −sin(α)
0 0 0 0 sin(α) cos(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

In “Appendix” section presents the respective independent material tensor entries Cii of
the three unit tiles for arbitrary rotations around the z−axis, following Eq. (23).
Given a set of different (an-)isotropic unit tiles that can be used to construct such

microstructures, it is possible to create a look-up table of homogenized materials, which
can then be used to simulate different macroscopic load cases. Table 2 is a snippet of such
a look-up table, and it shows the effective elasticity tensors for the two varying material
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Table 2 Exemplary look-up table for the effective elasticity tensors (here represented by
C11 and C22) for changing diameters of the rod in x-direction and rotations around the
z-axis

Rotation around the z-axis

0◦ 22.5◦ 45◦

Diameter of the rod in x-direction

0.2 mm

0.3 mm

0.4 mm

properties. The material properties in-between can be interpolated. This Table 2, will
be used in the following Example 3.3.5 to compute a large-scale microstructure with
interpolated homogenized material properties.

Example 5: Homogenizedmicrostructure

Consider themodel of Example 3.3.3 to be a part of a larger structure (see Fig. 22). Based on
thematerial database for the homogenized unit tiles (see Table 2) it is possible to simulate
such a structurewith a homogenizedmaterial. Similar to Example 3.3.3, the corresponding
geometric parts are modeled as B-repmodels. For the simulation, the model is subdivided
into an outer shell and an infill. The shell is considered to be of solid isotropic material,
whereas the infill is a homogenized microstructure which continuously changes the two
known properties: the rotation angleψ around the z−axis varies from 0◦ at the bottom to
90◦ at the top and the thickness of the rod Ø increases from the center z−axis of the infill
(Ø = 0.2 mm) towards the interface of the shell (Ø = 0.4 mm). A uni-axial compression
state is achieved by applying a uniform displacement of�z = −1.0 on the top surface and
restricting the displacements in the z−direction on the bottom surface. Three additional
point-bearings block the rigid body motions.
The simulation uses 15 × 15 × 15 high-order Legendre finite cells with a polynomial

degree of p = 4. For the integration, moment-fitting with the depth of an underlying
octree of d = 4 is chosen. At the interface between shell and infill, one h−refinement
step is carried out to capture the material discontinuity. As the homogenization of the
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Fig. 22 Structure consisting of a solid shell (red) and a homogenized microstructure (gray scale)

Fig. 23 Spline based interpolation of the material coefficients C11 and C22

unit tiles was carried out with periodic boundary conditions, the behavior at the interface
between shell and infill is not captured precisely. However, the affected domain is small
compared to the overall structure, thus, the introduced error is negligible. If, however, the
microscopic stress state at the transition from the micro-tiles to the shell is of interest,
then a geometrically resolving simulation as in Example 3.3.3 can be performed.
A total of 13 independent material coefficients are required to evaluate the material

tensor of the continuously changing microstructure. To this end, the material coefficients
that were computed in Example 3.3.4 and that are stored in a look-up table (see Table 2)
are interpolated using spline fitting. Figure 23 exemplary shows the interpolation for the
material coefficients C11 and C22 of the homogenized material tensor shown in Eq. (26).

C(∅(x),ψ(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0
C22 C23 C24 0 0

C33 C34 0 0
C44 0 0

C55 C56
symm. C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
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Fig. 24 a Displacements in x−direction and b von Mises stresses with the finite cell mesh

Fig. 25 Structure with hole: amodel, b displacements in z−direction (warped by a factor of s = 2), and c
von Mises stresses

Figure 24 shows the displacements in x−direction and von Mises stresses of the struc-
ture under uni-axial compression z−direction. The load is mainly transferred through the
stiffer shell, yet the contribution of the infill cannot be neglected.Due to the uni-axial com-
pression, the rotation angleψ of themicrostructure has only little influence. The thickness
of the rod Ø, on the other hand, can be deducted directly from the stress field of the infill.
It should be noted that a geometrical change does not influence the overall workflow.
Even a topological change does not lead to a re-meshing as it would be required for a
simulation with classical FEM or IGA. To illustrate such a topological change, a hole
is drilled through the structure (see Fig. 25). In the context of the FCM, a cylinder is
subtracted with a Boolean difference. As can be seen, the infill contributes less to the load
transfer, and high stress concentrations appear at the walls of the hole.

Conclusions
In this paper, three novel methodologies were presented: (a) At first, the FCM was
extended to V-models, as novel CAD representation form. As V-rep is based on a tri-
variate spline-formulation, the inversion—that is necessary for the point inclusion test—
turns out to be costly, in particular in cases where due to the geometric complexity of the
model a large number of integration points has to be used. In these cases the definition
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of an auxiliary B-rep model using ray tracing for the point membership test turns out to
improve the computational performance significantly.
(b) Secondly, the FCMwas extended to multi-material FGM. For this, the dimension of

the control points of the V-cells was increased to carry material information, as well. Dur-
ing the integration—apart from the point-inclusion test—also the material properties are
retrieved. The spline-based description of the V-cells renders the V-rep framework per-
fectly suitable tomodel smoothmaterial distributions. Yet, also rapidly changingmaterials
can be represented using knot-insertion.
(c) Finally, an efficientmethod for the simulation of large-scale single-material FGM—in

this case continuously changing microstructures—was presented. Using the parametric
description of the microstructures, representative unit tiles can be selected on which
homogenization simulations provide effective material properties. Material properties for
adjacent parameter sets are then interpolated using these values. Although this approach
allows the efficient simulation of large-scale microstructures, two problems arise. Firstly,
depending on the complexity of themicrostructure and the amount of varying geometrical
features, thenumberof representative unit tilesmight become large. Since for eachof these
unit tiles, an individual homogenization simulationneeds to be carried out, such structures
can become demanding in memory consumption as well as in computational time. And
secondly, the homogenization simulations with periodic boundary conditions provide
only precise results within the microstructure, yet not at the interface to another material
or a free surface. However, provided this interface or surface area is small compared to
the overall domain and considering that such kind of boundary layer effects usually vanish
rapidly away from the interface, the error is not dominant.
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Appendix
Effective material tensors of unit tiles This section is an extension of Example 3.3.4 and
provides material data, which is used in Example 3.3.5. The following polar diagrams
depict the independent entries Cii of the three material tensors (of the unit tiles) for
an arbitrary rotation around the z−axis. The values are computed with the Bond trans-
formation matrices [86], according to Eq. (23). Thus, at an angle of 0◦ the value equals
the corresponding entry of the respective unrotated material tensorC∗

Ti of Example 3.3.4.
Additionally, for a rotational degree of 45◦ the results are numerically verified (see Fig. 26).

Fig. 26 Displacement field of the warped rotated tiles with a scale factor s = 10
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Fig. 27 Independent elastic constants for tile 1 under rotation around the z−axis
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Fig. 28 Independent elastic constants for tile 2 under rotation around the z−axis

A rotation of tile 1 around the z−axis does not influence the third, fifth, and sixth
columns, neither on the respective rows of the effective tensor. The coefficient C11 equals
C22 due to the geometrical symmetry in x− and y−direction. C14 and C24 are of equal
magnitude but have opposite signs. Figure 27 shows the remaining independent material
constants with respect to the rotational angle. The results of the numerical simulation at
45◦ are indicated with red crosses.
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Fig. 29 Independent elastic constants for tile 3 under rotation around the z−axis

For tile 2, only the coefficient C33 which corresponds to the stiffness in z−direction
remains unchanged under rotation around the z−axis. All other entries are affected by the
altered symmetry. Considering a rotation angle of 90◦, it is noteworthy that the coefficients
C11 and C22 are switched with regard to the initial position. The same holds for the
coefficient pairs C55– C66, and C13–C23. The rest of the independent material parameters
are depicted in Fig. 28. Again, the results of the numerical simulation at 45◦ are marked
with red crosses.
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Tile 3 exhibits similar material symmetries as the second tile. Figure 29 shows the
material coefficients. Again, the results of the numerical simulation at 45◦ are marked
with red crosses.
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