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Abstract

In this work we present an advanced computational pipeline for the approximation
and prediction of the lift coefficient of a parametrized airfoil profile. The non-intrusive
reduced order method is based on dynamic mode decomposition (DMD) and it is
coupled with dynamic active subspaces (DyAS) to enhance the future state prediction
of the target function and reduce the parameter space dimensionality. The pipeline is
based on high-fidelity simulations carried out by the application of finite volume
method for turbulent flows, and automatic mesh morphing through radial basis
functions interpolation technique. The proposed pipeline is able to save 1/3 of the
overall computational resources thanks to the application of DMD. Moreover exploiting
DyAS and performing the regression on a lower dimensional space results in the
reduction of the relative error in the approximation of the time-varying lift coefficient
by a factor 2 with respect to using only the DMD.

Keywords: Reduced order modeling, Turbulent flows, Reduction in parameter space,
Active subspaces, Dynamic mode decomposition, Parametric shapes, Radial basis
functions interpolation

Introduction
Reduced order modeling (ROM) is nowadays a quite popular and consolidated technique,
applied to several fieldsof engineering andcomputational science thanks to the remarkable
computational gain granted for the solution of the governing equations. The ROM goal
is in fact that of reducing the dimension of the studied system without altering some
important properties of the original problem. This typically results in more efficient, time
saving computations. Among other fields, ROMmethods are frequently and successfully
applied to problems governed by parametric partial differential equations (PDEs), for
which many solutions of the same PDE in correspondence with different parameters are
required. This paradigm is for example encountered in the context of parametric optimal
control problems, uncertainty quantification, and shape optimization.
Model reduction for PDEs has been historically obtained in different ways. In some

cases, very successful reduced models have been obtained at the level of the governing
equations, based on physical considerations. This is for instance the case of the potential
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flow theory in the fluid dynamics field. In other cases, the reduction can be introduced
at the discretization level, as is the case, for instance, for the Boundary Element Method
used in structural analysis, fluid mechanics, electro-magnetism and acoustics studies.
In the case in which parametric PDEs are considered, a possible approach to obtain
efficient reduced order models is to sample the solution manifold by creating a solutions
database corresponding to different parameters, using a high-dimensional discretization,
then combine the latter to identify the intrinsic lower dimension of the problem. For
parametric reduced order models see [23,42,43], while for a more applications oriented
overview we suggest [44,45,50].
Forparametric time-dependentproblems, aproperorthogonal decompositionapproach

can be applied to reduce the dimensionality of the system, as in [19,25]. In this work
we propose a novel data-driven approach for parametric dynamical systems, combining
dynamic mode decomposition (DMD) with active subspaces (AS) property. These two
relatively new methodologies provide a simplification of the dynamical system, and an
analysis of the input parameter space of a given target function, respectively. Exploiting
AS property we are able to obtain an estimation of the importance of the parameters of
such function, as well as a reduction in the number of parameters. Moreover the methods
are equation-free, being based only on input/output couples and do notmake assumptions
on the underlying governing equations.
We define a generic scalar output v(μ, t) ∈ R that depends both on time t and on the

parameters of the model μ ∈ D ⊂ R
k , with k denoting the dimension of the parameter

space.We denote the state of the parametric system at time t with vt (μ) ∈ R. The solution
manifold in time is approximated using the DMD in order to obtain an approximation of
the linear map A defined as:

vt+1(μ) = A(vt (μ)). (1)

It is easy to note that using (1) we have the possibility to forecast a generic future state of
the parametric system.
To numerically compute the linear operator A, we need to sample the parameter space

D, and for each time store the quantity of interest for each parametric configuration.
Formally, considering a set of parameter samples with dimension Ns, the discrete vector
referring to the system state at time t results:

vt =
[
vt (μ1) . . . vt (μNs)

]T ∈ R
Ns. (2)

Collecting several time states vi(μ) for i = 1, . . . , m, we compute the operator A with a
best-fit approach such that vt+1 ≈ Avt . Once computed the future prevision, we are able
to exploit the relation between the input parameters μi and the related outputs vfuture(μi)
to approximate the output for any new parameter. In this work we use a Gaussian Process
Regression (GPR) [22,56], but any regression or interpolation method can be used. We
underline that the chosen regression model has to be fitted for any forecasted time we
want to analyse.
Thehighdimensionality in theparameter spacemay incur on the inability to solvemany-

query problems with sufficiently high fidelity, thus causing a decrease in the accuracy of
the solution approximation. For this reasonwe couple the regressionwith theAS property
in order to perform a sensitivity analysis of function vt (μ). AS indeed is able to provide
an approximation g of a scalar function f , where the input parameters of g are a linear
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combination of the original parameters of f . The coefficients of such combination give
information about the importance of the original parameters. In this work, we use this
information to reduce the dimension of the parameter space—in which we build the
regression—by not considering the parameters whose AS coefficients are smaller than a
certain threshold, that is they are almost zero.
The developed methodology is tested on an aeronautics application given by the flow

past an airfoil profile. As output of interest we considered the lift coefficient and the
parameters vector μ describes geometrical transformations according to the morphing
technique proposed in [24]. The fluid dynamics problem is described using the incom-
pressible Navier–Stokes equations with turbulence modeling. These are discretized using
a finite volume approximation. The deformed meshes corresponding to different input
parameters are automatically obtained exploiting a Radial Basis Function (RBF) mesh
morphing technique.
This work is structured as follows: in “The parametric problem” section we present

the general parametric problem over which we apply the proposed numerical pipeline,
providing some information about the geometrical deformation. In “Dynamical systems
approximation by dynamicmode decomposition” and “Global sensitivity analysis through
active subspaces” sections we present the DMD and AS methods, respectively, while in
“Computational pipeline” section we show the numerical setting of the problem and the
results obtained. Finally in “Conclusions and perspectives” section we propose some final
remarks and highlight possible future developments.

The parametric problem
Let be given theunsteady incompressibleNavier-Stokes equationsdescribed in anEulerian
framework on a parametrized space-time domainQ(μ) = Ω(μ)× [0, T ] ⊂ R

d ×R
+, d =

2, 3 with the vectorial velocity field u : Q(μ) → R
d , and the scalar pressure field p :

Q(μ) → R such that:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + ∇ · (u ⊗ u) − ∇ · 2ν∇su = −∇p in Q(μ),

∇ · u = 0 in Q(μ),

u(t, x) = f (x) on Γin × [0, T ],

u(t, x) = 0 on Γ0(μ) × [0, T ],

(ν∇u − pI )n = 0 on Γout × [0, T ],

u(0, x) = k(x) in Q(μ)0,
(3)

holds. Here, Γ = Γin ∪ Γ0 ∪ Γout is the boundary of Ω(μ) and it is composed by three
different partsΓin,Γout andΓ0(μ) that indicate, respectively, inlet boundary, outlet bound-
ary, and physical walls. The term f (x) depicts the stationary non-homogeneous boundary
condition, whereas k(x) denotes the initial condition for the velocity at t = 0. Shape
changes are applied to the domainΩ , and in particular to its boundary Γ0(μ) correspond-
ing to the airfoil wall. Such shape modifications are associated to numerical parameters
contained in the vector μ ∈ R

k which, in the numerical examples shown in this work
has dimension k = 10. As said, the only portion of the domain boundary subject to
shape parametrization is the physical wall of the airfoil Γ0(μ), which in the undeformed
configuration corresponds to the 4-digits, NACA 4412 wing profile [3,27]. To alter such
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Fig. 1 Airfoil shape functions with respect to the profile abscissa. The leading edge corresponds to x = 0

geometry, we adopt the shape parametrization andmorphing technique proposed in [24],
where k shape functions are added to the airfoil profiles. Let yu, and yl be the upper and
lower ordinates of a NACA profile, respectively. We express the deformation of such
coordinates as

yu = yu +
5∑

i=1
ciri, (4)

yl = yl −
5∑

i=1
diri, (5)

where the bar denotes the reference undeformed state, which is the NACA 4412 profile.
The parameters μ ∈ D ⊂ R

10 are the weights coefficients, ci and di, associated with
the shape functions ri. The range of each parameter will be specified in “Computational
pipeline” section. The explicit formulation of the shape functions can be found in [24], we
report them in Fig. 1.
After the reference profile is deformed, we also apply the same morphing to the mesh

coordinates by using a radial basis functions (RBF) interpolation method [9,39,40]. With
this approach themovement s of all the points which do not belong to the moving bound-
aries is approximated by an interpolatory radial basis function:

s(x) =
Nb∑
i=1

βiξ (||x − xbi ||) + q(x), (6)

where xbi are the coordinates of points for which we know the boundary displacements,
for this particular case the points located on the wing surface.Nb is the number of control
points on the boundary, ξ is a given basis function, q(x) is a polynomial. The coefficients
βi and the polynomial q(x) are obtained by the imposition of interpolation conditions

s(xbi ) = dbi , (7)
where dbi is the displacement value at the boundary points and by the additional require-
ment:

Nb∑
i=1

βiq(xbi ) = 0. (8)
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In the present case, we select basis functions for which it is possible to use linear polyno-
mials q(x). For more information concerning the selection of the order of polynomials see
[5]. Finally the values of the coefficients βi and the coefficients δi of the linear polynomials
q can be obtained by solving the linear problem:

[
db
0

]
=

[
Mb,b Pb
PT
b 0

] [
β

δ

]
, (9)

whereMb,b ∈ R
Nb×Nb is a matrix containing the evaluation of the basis functions ξbibj =

ξ (‖xbi − xbj‖), and Pb ∈ R
Nb×(d+1) is a matrix where d is the spatial dimension. Each

row of this matrix, that contains the coordinates of the boundary points, is given by
rowi(Pb) =

[
1 xbi

]
. Once the system of (9) is solved one can obtain the displacement of

all the internal points using the RBF interpolation:

dini = s(xini ), (10)

where xini are the coordinates of the internal grid points. The computation of the dis-
placement of the grid points entails the resolution of a dense system of equations that has
dimension Nb + d + 1. Usually, the number of boundary points Nb is much smaller than
the number of grid points Nh.

Dynamical systems approximation by dynamic mode decomposition
Dynamicmode decomposition (DMD) is an emerging reduced ordermethod proposed by
Schmid in [46] for the analysis of dynamical systems. Approximating the linear infinite-
dimensional Koopman operator [30], DMD decomposes the original system into few
main features, the so called DMD modes, that evolve linearly in time, even if the original
system has nonlinear behaviour. This means that, other than individuating recurrent
patterns in the evolution of the system, DMD provides a real-time midcast/forecast of
the output of interest. An important advantage of such method is the complete data-
driven nature: the algorithm relies only on the system output, without the necessity of
any information regarding the model or equations used. Dynamic mode decomposition
has been successfully employed in naval hull shape optimization pipelines [15], for online
real-time acquisitions in a wind tunnel experiment [59], and in meteorology [6], among
others. We also mention the higher order DMD extension [34,35].
In the following paragraph, we provide just an algorithmic overview of the method. For

an exhaustive explanation of DMD, its applicability, and possible extensions, we suggest
[8,31].
We define the linear operator A such that

xk+1 = Axk , (11)

where xk+1 ∈ R
N and xk ∈ R

N are the vectors containing the system outputs at two
sequential instants. Thus, the operator A : RN → R

N expresses the dynamics of the
system. In order to construct it using only data, we need to collectm ≤ N + 1 equispaced
in time outputs xi for i = 1, . . . , m—from now on called snapshots—then arrange them in
twomatrices:X =

[
x1 . . . xm−1

]
and Y =

[
x2 . . . xm

]
. Since the corresponding columns

in X and Y are sequential snapshots, we are able to use (11) to represent the relationship
between X and Y, such that Y = AX. We can find such operator by using the relation
A = YX†, where † refers to the Moore-Penrose pseudo-inverse. We exploit the singular
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value decomposition to compute such pseudo-inverse, due to its computational efficiency
and accuracy, as in the following:

X = U�V∗, (12)

where the matrix U ∈ R
N×(m−1) contains the orthogonal left-singular vectors. We can

then project the operator onto the space spanned by the left-singular vectors to get the
reduced operator Ã. It is possible to note that the reduced operator does not require the
construction of the high-dimensional one:

Ã = U∗AU = U∗YX†U = U∗YV�−1U∗U = U∗YV�−1. (13)

We can now reconstruct the eigenvectors and eigenvalues of the matrix A thanks to the
eigendecomposition of Ã as ÃW = WΛ. In particular each nonzero eigenvalue λ inΛ is a
DMD eigenvalue. The corresponding DMD eigenvectors, the so called exact modes [53],
can be retrieved by the eigenvectors of Ã as � = YV�−1W, where different scalings are
possible.We underline that each pair (φ, λ) computed as above is an eigenpair ofA (please
refer to the proof of Theorem 1 in [53]). Thus, being A = �Λ�†, we can approximate
the evolution of the system xk+1 = �Λ�†xk . Moreover, it is easy to demonstrate that the
approximation of a generic future snapshots can be computed as:

xk+j = �Λj�†xk . (14)

In this work we compute the DMD modes of the matrix composed by the value of the
time-varying lift coefficient for a set of given geometrical parameters. Thenwe can predict
the future state of the coefficient and, using a regression method, approximate the target
function at untried new parameters. All the DMD computation have been carried out by
the Python package PyDMD [16].

Global sensitivity analysis through active subspaces
Active subspaces [10] have been successfully employed in many engineering fields [12,
13]. Among other we mention applications in shape optimization [20,38], combustion
simulations [29], and in naval engineering [51]. For multifidelity dimension reduction
with AS see [32], for multivariate extension of AS we mention [58], while for a coupling
with deep neural networks see [52].
Active subspaces have also been proven as a useful tool to enhance model order reduc-

tion techniques such as proper orthogonal decomposition (POD) with interpolation for
structural and fluid dynamics problems [17], and POD-Galerkinmethods for a parametric
study of carotid artery stenosis [49].
Here we briefly introduce the active subspaces property for functions not depending on

time, for the details and estimates regarding the method we refer to [10]. For the actual
computations to find AS we used the open source Python package ATHENA—Advanced
Techniques for High dimensional parameter spaces to Enhance Numerical Analysis [2],
derived in part from the Python Active subspaces Utility Library [14].
Let μ ∈ R

k the parameters of our problem, f be a parametric scalar function of interest
f (μ) : Rk → R, and ρ : Rk → R

+ a probability density function representing uncertainty
in the input parameters. Active subspaces are a property of the pair (f, ρ). They are defined
as the leading eigenspaces of the second moment matrix of the target function’s gradient
and constitutes a global sensitivity indexmore general than coordinate-aligned derivative-
based ones [58].
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The secondmomentmatrix of the gradientsC, also called uncentered covariancematrix
of the gradients of f with respect to the input parameters, is defined as

C = E [∇μf ∇μf T ] =
∫
(∇μf )(∇μf )Tρ dμ, (15)

where E[·] is the expected value, and ∇μf ≡ ∇f (μ) ∈ R
k . C is symmetric thus it admits a

real eigenvalue decomposition that reads:

C = WΛWT , (16)

whereW indicates the orthogonalmatrix containing the eigenvectors ofC as columns, and
Λ is a diagonal matrix composed by the non-negative eigenvalues arranged in descending
order. We can decompose the two matrices as follows

Λ =
[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ R

k×M, (17)

where M < k has to be properly selected by identifying a spectral gap. In particular, we
define the active subspace of dimension M as the principal eigenspace corresponding to
the eigenvalues prior to the gap. Then we can map the full parameters to the reduced
ones through W1. We define the active variable as μM = WT

1 μ ∈ R
M , and the inactive

variable as η = WT
2 μ ∈ R

k−M . In practice thematrixC is constructed with aMonte Carlo
procedure.
AS stipulates that the directional derivatives in directions belonging to the kernel ofWT

1
are significantly smaller that those belonging to the range of the same matrix. Moreover
this assumptions are made in expectation rather then in absolute sense [57].
Since in this way we are considering a linear combinations of the input parameters,

we can associate the eigenvectors elements to the weights of such combinations, thus
providing a sensitivity of each parameter. We underline that if a weight is almost zero,
that means f does not vary along that direction on average.
We can use the active variable to build a ridge function g [36] to approximate the

function of interest, that is

f (μ) ≈ g(WT
1 μ) = g(μM). (18)

In this work we want to study the behaviour of a target function f (μ, t) : Rk ×R
+ → R

that depends on the parametersμ and on time t aswell. This results in extending the active
subspaces property to dynamical systems, that means having to deal with time-dependent
uncentered covariance matrix C(t), and corresponding eigenvectors wi(t). Efforts in this
direction has been done in [11] for a lithium ion batterymodel, in [37] for long termmodel
of HIV infection dynamics, and more recently an application of dynamic mode decompo-
sition and sparse identification to approximate one-dimensional active subspaces in [4].
In these works they refer to dynamic active subspaces (DyAS) as the time evolution of the
active subspaces of a time-dependent quantity of interest.
DyAS are useful to assess the importance of each input parameter at given times and

to study how the weights associated to the inputs evolve. In the following we are going to
compute the AS for a set of equispaced times ti. If some of the parameters are almost zero
in the entire time window we can safely ignore them in the construction of the Gaussian
process regression.
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Fig. 2 Flowchart representing the proposed computational pipeline

Computational pipeline
In the present section we will discuss the numerical experiments carried out to test
the DyAS analysis and present the results obtained. As reported in “Dynamical systems
approximation by dynamic mode decomposition” section, each high fidelity simulation is
based on a parametric fluid dynamic model governed by the Reynolds Averaged Navier–
Stokes (RANS) equations. Thus, a number of flow simulations have been carried out
selecting different samples in the parametric space to test the performance—in terms of
lift coefficient—of different airfoil shapes. The simulations made use of both the RANS
solver provided in the OpenFOAM [54] finite volumes library, and of the DMD accel-
eration methodology described in “Global sensitivity analysis through active subspaces”
section. Once the lift coefficients output were available for all the samples tested in the
input parameters space, theDyAS analysiswas applied to assess possible parameter redun-
dancy.The eliminationof the redundant parameters detected in theDyASanalysis allowed
for the generation of a surface response model based on a lower dimensional space, which
has been finally tested against the original RANS model accelerated through DMD, and
against the surface response model based on the original input parameter space. Figure 2
graphically summarizes the proposed pipeline, clarifying how the methods (and the soft-
ware) are integrated together, while the following sections will further detail each part of
the computational pipeline just outlined.

Parametric shape deformation

The fluid dynamics problem is resolved using the finite volume method. The wing is
immersed in a rectangular domain according to Fig. 3. The reference mesh counts 46500
hexahedral cells and is constructed using the blockMesh utility of the OpenFOAM library.
Figure 3 depicts a detail of the grid in proximity of the wing. The meshes in the deformed
configuration have been obtained starting from the reference configuration using a radial
basis function smoothing algorithm similar to the one implemented in [7]. A single defor-
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mation corresponds to a sample μ in the parameter space D := [0, 0.03]10 ⊂ R
10. There-

fore all the deformedmeshes share the same number of cells and the samemesh topology.
In particular Wendland [55] second order kernel functions with radius rRBF = 0.1 m
have been used. The control points of the RBF procedure have been placed on each
mesh boundary point located onto the wing surface. Since the outer boundary points are
fixed we decided to neglect them from the RBF computation using a smoothing function
defined in such a way that the RBF contribution reduces to zero after a certain distance
from a focal point [28]. Particularly, the focal point has been placed in the geometric
center of the airfoil chord segment and the distance from the focal point after which
the RBF contribution is neglected is set to rout = 7 m. In Fig. 4 we depict the envelope
of all the tested configurations, and the flow velocity streamlines for a particular sam-
ple in the parameter space. A uniform and constant velocity equal to uin = 1 m/s is
set at the inlet boundary, while the constant value of the kinematic viscosity is set to
ν = 2e−5 m2/s. This configuration, considering a chord length D = 1 m, corresponds to
Reynolds number Re = 50000. As well known, a flow characterized by Reynolds number
of such magnitude requires turbulence modeling to be numerically simulated with rea-
sonable computational effort. In the present work, turbulence has been modeled using
a RANS approach with a Spalart-Allmaras turbulence model [47]. The pressure velocity
coupling is resolved in a segregated manner making use of the PIMPLE algorithm which
merges the PISO [26] and the SIMPLE [41] algorithm. The time step used to advance the
simulation in time is set constant and equal to Δt = 1e − 3 s. The convective terms have
been discretized using a second-order upwinding scheme, while the diffusion terms are
discretized using a linear approximation scheme with non-orthogonal correction. The
time discretization is resolved using a second order backward differentiation formula.
The simulation is advanced in time until the flow has reached stationary behavior. For the
present problem, setting a total simulation time Ts = 30 s is sufficient to reach a solution
which is reasonably close to the steady state one. In order to check the consistency of the
numerical results, the stationary lift coefficient computed for the reference configuration,
which corresponds to a standard NACA 4412 profile with a 0◦ angle of attack, has been
compared with data from literature [1]. The computed lift coefficient for such setting is
equal to CL = 0.355 and the available reference value varies between CL = 0.1804 and
CL = 0.3708 depending on the value ofNcrit. Therefore, our numerical results are in line
with available data in existing literature1.

Parameter space reduction

The present section will discuss the application of DyAS to the problem of the two dimen-
sional turbulent flow simulation past airfoil sections with parameterized shape. Such a
fluid dynamic problem is relevant in several engineering fields, as it is encountered in a
number of industrial applications, ranging from aircraft and automotive design, to turbo
machinery and propeller modeling. We must here point out that in this work, the DMD
method is used for faster evaluation of the parameterized airfoils lift towards a steady state
regime solution. We remark that, since DMD is designed for time evolutionary problems,

1Such comparison is not exhaustive to completely verify the accuracy and the reliability of the full ordermodel numerical
simulations. It is however beyond the scope of thiswork to perfectlymatch experimental activities or previous numerical
results with the full order simulations.More accurate FOM results would of course result inmore accurate ROMresults
but would not affect the presented methodology.
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Fig. 3 Sketch of the computational domain used to solve the fluid dynamics problem in its reference
configuration. The left picture reports a schematic view on the domain with the main geometrical
dimensions. The right plot reports a zoom on the mesh in the proximity of the wing
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Fig. 4 The left picture reports in light blue the envelope of all the tested configurations used during the
training stage. The right picture depicts the flow velocity streamlines for one particular sample inside the
training set μ = [0.0071; 0.0229; 0.0015; 0.0015; 0.0087; 0.0107; 0.0033; 0.0130; 0.0247; 0.0280]

the same procedure can be used in the same fashion, to speed up convergence to periodic
regime solutions [33]. Indeed, recent work on hydroacoustic computations based on LES
suggested that DMD modal decomposition can successfully be employed in the recon-
struction of complex and turbulent flow fields [18] provided that the snapshots used are
enough to characterize all the relevant time and space frequencies in the flow. In addition,
we observed that complex full order flows characterized by richer spectra require a higher
amount of modes to obtain accurate flow fields reconstruction. Thus, our experience sug-
gests that the ROM instruments used in this work are indeed effective when employed
withmore complex physics. For such reason, given our experience, we infer that the design
pipeline here presented can also be used to study the unsteady dynamics of bubbles and
vortices past the airfoil. Obviously one requirement of such type of problems would be a
suitable FOM model able to capture transition phenomena occurring in the stall region.
For example, we believe that the underlying high fidelity URANS solver would not be
appropriate and that a transition to a LES approach would be required.
A few plots describing the DyAS results for the lift coefficient output are presented in

Figs. 6, 7, 8, and 9. The plots in the figures are aimed at representing the evolution of the
active subspace effectiveness and composition over the time dependent flow simulations.
More specifically, the left diagram in each figure plots the lift coefficient at each sample
point tested, as a function of the first active variable obtained through a linear combination
of the sample point coordinates in the parameter space, that is f (μ, t) againstWT

1 μ.
Presenting the components of the first eigenvector of the uncentered covariancematrix,

the right plot in each figure indicates theweights used in such linear combination to obtain
the first active variable. In summary, the right diagram in each Figure suggests the impact
of each of the original parameters on the first active variable, while the left diagram is an
indicator of how well a one dimensional active subspace is able to represent the input to
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Fig. 5 The temporal evolution of the lift coefficient from 1 s to 30 s for 9 different parameters, together with
the mean (dashed). The angle of attack is fixed for all the airfoil profiles and it is equal to 0◦

output relationship. Following the evolution of these two indicators it is possible, at each
time instant, to assess how effective the one dimensional parameter dimension reduction
is, and what is the sensitivity of the reduced lift coefficient output to variations of the
original parameters.
The plots in Figs. 6, 7, 8, and 9 show the results of the DyAS at the fixed time instants

t = 6 s, 10 s, 14 s, 18 s, respectively. We here remark that, given the aforementioned
considerations about the solution build up in the first 12 s of the simulations, the solutions
at t = 6 s and t = 10 s are not entirely relevant by a physical perspective. Yet, presenting
such cases is still helpful in illustrating how the DyAS evolve over time and can be used
to evaluate the system behavior and the output sensitivities with respect to the input
parameters. For completeness in Fig. 5 we depicted the temporal evolution of 9 different
morphed airfoils, and the mean among all the airfoils. A first look at the right plots for
each time steps, suggests that the contribution of the parameters corresponding to the
bump shape functions r1, and r5, for both the top and the bottom part of the airfoil profile
are almost negligible. This means the lift coefficient is almost insensitive to variations of
these 4 parameters. Alternatively, it can be said that the output function is on average
almost flat along directions corresponding to the axes corresponding to parameters c1, c5,
d1, and d5.
Figures 6 and 7 present the characterization of the one dimensional active subspace

at time t = 6 s and t = 10 s, respectively. We can clearly see that the lift coefficient is
perfectly approximated along the identified direction, and such direction (the eigenvector
elements) is almost the same at t = 6 s and t = 10 s. This should not completely surprise as
both time instants are included in an initial acceleration phase duringwhich the air coming
from the inflow boundary is reaching the airfoil. Given the domain arrangement described
in Fig. 3, the flow velocity around the impulsively started airfoil leading edge is expected
to reach the inflow value at time t = 10 s. For such reason, we will focus the description
on the plots for t = 10 s, although the considerations can be immediately reproduced
for previous time steps. The left plot in Fig. 7 suggests that at this meaningful instant,
the first active subspace represents the input to output relationship with remarkably good
accuracy. In fact, only a single output value corresponds to each active variable value. In
other words, when plotted against the first variable, the output appears like a curve—a
line in the present case. A look at the right diagram suggests that the shape parameters
having the most impact on the lift generated by the airfoil are c3, c4, d3 and d4, which
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Fig. 6 On the left the sufficiency summary plot for the lift coefficient at time t = 6.0 s. On the right the first
eigenvector components at the corresponding parameters

Fig. 7 On the left the sufficiency summary plot for the lift coefficient at time t = 10.0 s. On the right the first
eigenvector components at the corresponding parameters

are the ones associated to shape functions with peaks located around the middle of the
airfoil chord. The positive values of the eigenvector components associated to c3, c4, d3
and d4, along with the positive slope of the curve in the left plot in Fig. 7 suggest that, at
this particular time instant, higher values of lift can be obtained by increasing the airfoil
thickness in the mid-chord region.
Similar considerations can be drawn from Fig. 8, which refers the the DyAS analysis

carried out at t = 14 s. Here, the points in the left diagram do not completely cluster
on top of a single valued curve as was the case for the previous time step considered.
Compared to what has been observed at t = 10 s, the data clearly indicate that at t = 14 s
an input to output relationship obtained using only a one dimensional active subspace
will lead to less accurate lift coefficient predictions. Yet, the points in the plot are still all
located within a rather narrow band surrounding a regression line having positive slope.
Thus, all the considerations on the lift coefficient sensitivity with respect to variations of
the shape parameters that can be inferred from the right plot, will still hold at least by a
qualitative standpoint.Here, the eigenvector components suggest that themost influential
parameters on the lift coefficient are c3,d3 andd4, while c2 andd2 affect the output in lesser
but not negligible fashion. Compared to the previous case the importance of coefficient
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Fig. 8 On the left the sufficiency summary plot for the lift coefficient at time t = 14.0 s. On the right the first
eigenvector components at the corresponding parameters

c4 on the output is significantly reduced. We recall that c4 is associated with increased
y coordinates of the airfoil suction side past the mid-chord region. Thus, we might infer
that in the acceleration phase higher lift values are obtained not only increasing the front
thickness, but also lowering the camber line in the region past mid-chord.
Figure 9 shows the results of theDyAS analysis at t = 18 s, when the flow approaches the

final regime solution. Following the trend observed for t = 14 s, the left plot in the figure
indicates that a one dimensional active subspace is not completely able to represent the
input to output relationship in a satisfactory fashion. With respect to the previous plots,
the output values are here located in an even wider band around a regression line with
positive slope. Again, on one hand this increasingly blurred picture suggests that higher
dimensional active subspaces are required to reproduce the steady state solution with
sufficient accuracy; on the other hand, the diagram still suggests a quite definite trend in
the output, which can be exploited for qualitative considerations. Quite interestingly, at
the present time step the eigenvector component corresponding to the c4 coefficient has
negative sign. Given the positive slope of the input to output relationship in the left plot
of Fig. 9, this implies that increases in the airfoil ordinates on the top side in the region
past the mid-chord result in lift loss. Thus, this seems to suggest that an airfoil with a
higher camber line curvature, combined with a thicker leading edge region might result
in increased lift. This should not surprise, as a similar kind of airfoil would result in a
higher downwash due to the increased camber line curvature, yet being able to avoid stall
by means of a thicker and rounder leading edge. Thus, the DyAS analysis at different time
steps shows that as the impulsively started airfoil moves from an acceleration phase to a
steady state regime solution, the shape modifications leading to increased lift transit from
a purely symmetric increase of the thickness in themid-chord region, to a non-symmetric
modification of the camber line united with a symmetric leading edge thickness increase,
respectively. Such behavior is indicated by the sign of c4 coefficient in the eigenvector
characterizing the one dimensional active subspace, which is likely detecting that at steady
state, regime solution, airfoils with higher camber line curvature and thicker leading edges
produced higher downwash.
We underline that the eigenvector components of all the time instants presented corre-

sponding to the coefficients c1, c5, d1, and d5 are almost zero. This means that on average
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Fig. 9 On the left the sufficiency summary plot for the lift coefficient at time t = 18.0 s. On the right the first
eigenvector components at the corresponding parameters

the lift coefficient is almost flat along these directions. We are going to exploit this fact by
freezing these parameters and constructing a GPR on a reduced parameter space.

GPR approximation and prediction of the lift coefficient

The previous analysis pointed out the presence of several input parameters with minimal
average influence on the target function. Making use of such consideration we construct
a response surface which only depends on the remaining parameters. Both for the full
parameter space and the reduced one, we use a Gaussian process regression with a RBF
kernel implemented in the open source Python package GPy [21]. We then compare the
performance of the two regression strategies by computing the relative error over a test
data set composed by 100 samples. The error is computed as the Euclidean norm of the
difference between the exact and the approximated solution over the norm of the exact
solution. The training set is composed by the same 70 samples, in 10 dimensions for the
GPR over the original parameter spaces, and in 6 dimensions for the reduced one. Up to
t = 20 s the training is done using the high-fidelity simulations.
To speed up the convergence to the regime state (t = 30 s) we applied the DMD to

get the future-state prediction of the lift. In particular, due to the initial propagation of
the boundary conditions, for all the 70 training deformations we use the trend of lift
coefficients within the temporal interval [12, 20] s to fit the DMDmodel, that means 8000
temporal information (Δt = 0.001 s). Since we used 10 POD modes—selected using the
energetic criterion—for theprojectionof theDMDoperator, our low-rankoperator results
of dimension 10. Despite in this case the dimensional reduction is not huge, this approach
allows to predict the future state in a very fast fashion. In the high-fidelity model, we need
in fact 1508 CPU seconds (on average) to simulate 1 s of the physical model, instead using
DMD we can approximate a future state in less than 0.1 CPU seconds. In practices, this
means that, to reach the regime state with the standard approach, the simulation lasts
1508 s × 30 ≈ 45000 s, while with the DMD we have 1508 s × 20 + 0.1 s ≈ 30000 s,
guaranteeing to save 1

3 of the overall computational load. All the simulations, both at the
FOM and at the ROM level have been run serially on an Intel Xeon E5-2640, 2.50 GHz
CPU. We highlight that this is only a part of the computational saving of the pipeline
that we are proposing and is related to the training stage. The DMD allows in fact for 1/3
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Fig. 10 Sensitivity analysis of the dimension of the training set for the DMD (left) and for the response
surface using GPR (right). For the DMD, we use 70 samples (of the parametric space) evolving in time in
[12, 20] s and we measure the mean relative error at time 30 s varying the sampling frequency; for the GPR,
we build the response surface using up to 70 sampling lift coefficients at time 20 s and computing the mean
relative error over the test dataset composed by 100 test deformations

reduction of the simulation time required to the FOM as the remaining time is simulated
by an approximated model. On the other side, once the reduced order model has been
constructed, exploiting the combination of the Gaussian Process approximation and the
DMD, it is possible to test new geometries in real time, with a negligible computational
cost. Regarding the accuracy, we present in Fig. 10 a sensitivity analysis on the number of
training snapshots, varying the temporal sampling period ΔtDMD from 1e − 3 s to 0.2 s
and measuring the error on the predicted state at t = 30 s. Similarly, we propose an
analysis on the GPR accuracy: using a varying number of lift coefficients at t = 20 s, we
build the response surface and measure the error for untried parameters, both in the full
dimensional space and in the reducedone. InFig. 11wecompare the twoGPRperformance
at each of the time steps analyzed in the simulations. Until 12 s, the regressions behave in
a very similar fashion, while from 15 s the accuracy gain obtained by distributing the 70
samples in a lower dimensional space becomes significant. The error gap between the 6
and 10 dimensional response surface in fact, consistently increases from 0.016 at 15 s to
0.045 at steady state. This corresponds to a decrement of the error by a factor 2.
The proposed method achieves better results because it exploits the DyAS to discard

the directions of the input parameter space along which the target function does not vary.

Conclusions and perspectives
We presented a computational pipeline to improve the approximation of the time-
varying lift coefficient of a parametrized NACA airfoil. The pipeline comprises automatic
mesh deformation through RBF interpolation, high-fidelity simulation with finite volume
method of turbulent flow past the airfoil, global sensitivity analysis exploiting AS, and
future state prediction via DMD reduced order method. This resulted in more accurate
Gaussian process regression of the lift coefficient even if in a reduced parameter space.
Despite the turbulent nature of the flow, the selected testcase does not show highly non-
linear phenomena—e.g. stall, reattachment—that usually occur in several fluid dynamics
problems. The proposed framework can be extendend to address also more complex
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Fig. 11 The relative error of the approximated outputs at different times. The relative error is computed on
100 test samples, using the high-fidelity lift coefficient to train the regression for t ≤ 20 s, while for t > 20 s
the DMD forecasted states are used for the training

applications, provided that a suitable number of snapshots is given to characterize the
parameter space and frequencies required by the DMD training. Of course such more
demanding training requirements would likely result in reduced ROMs speed up and
would require case-specific treatments.
After the creation of the high-fidelity solutions database the application of AS high-

lighted a possible reduction of the parameter space due to negligible contributions of 4
different parameters. We exploit this reduction to construct a GPR over a smaller param-
eter space, thus improving its performance. Since the training of the regression model is
done over 6 dimension instead of 10, given the same high-fidelity database dimension, the
GPR is able to better approximate the solution manifold. This results in better lift coeffi-
cient predictions for new untried parameters. We also applied DMD to have future-state
prediction of the target function up to 30 s and proved that the effective gain of the new
GPR is preserved also for any time after the 20 s simulated with FV. In particular from 13
s the actual gain is significant, at 15 s we have an increased performance by a factor 2 in
the relative error, which means that performing the regression in the reduced parameter
space produces a relative error equal to 0.02, instead of 0.036. Evolving in the future the
error drop increases up to 0.045 at regime (0.042 instead of 0.087, keeping the factor 2).
This computational pipeline can be seen as a parametric dynamic mode decomposition

for some extent. Moreover, the sensitivity analysis has a negligible computational cost
with respect to the creation of the offline high-fidelity database.
Future developments can be the study of adaptive sampling strategies exploiting a

generic n-dimensional active subspace, and the coupling of different model order reduc-
tionmethods. Another possible extension of the presentedmethod regards the possibility
to apply the framework to a flow field—e.g. pressure, velocity—rather than to a scalar
output. It would be interesting to use this non-intrusive setting as a preprocessing tool to
reduce the number of simulations required to build a reduced basis space which is later
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used in an intrusive manner [48]. We think this new computational pipeline can be of
much interest in the context of shape optimization and dynamical systems.
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