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Abstract

We propose a novel approach to structural health monitoring (SHM), aiming at the
automatic identification of damage-sensitive features from data acquired through
pervasive sensor systems. Damage detection and localization are formulated as
classification problems, and tackled through fully convolutional networks (FCNs). A
supervised training of the proposed network architecture is performed on data
extracted from numerical simulations of a physics-based model (playing the role of
digital twin of the structure to be monitored) accounting for different damage
scenarios. By relying on this simplified model of the structure, several load conditions
are considered during the training phase of the FCN, whose architecture has been
designed to deal with time series of different length. The training of the neural network
is done before the monitoring system starts operating, thus enabling a real time
damage classification. The numerical performances of the proposed strategy are
assessed on a numerical benchmark case consisting of an eight-story shear building
subjected to two load types, one of which modeling random vibrations due to
low-energy seismicity. Measurement noise has been added to the responses of the
structure to mimic the outputs of a real monitoring system. Extremely good
classification capacities are shown: among the nine possible alternatives (represented
by the healthy state and by a damage at any floor), damage is correctly classified in up
to 95% of cases, thus showing the strong potential of the proposed approach in view of
the application to real-life cases.

Keywords: Structural health monitoring, Fully convolutional networks, Damage
localization, Time series analysis, Deep learning

Introduction
Collapses of civil infrastructures strike public opinion more and more often. They are
generally due to either structural deterioration or modified working conditions with
respect to the design ones. The main challenge of structural health monitoring (SHM)
is to increase the safety level of ageing structures by detecting, locating and quantifying
the presence and the development of damages, possibly in real-time [1]. However, visual
inspections—whose frequencies are usually determined by the importance and the age
of the structure—are still the workhorse in this field, even if they are rarely able to pro-
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vide a quantitative estimate of structural damages. Therefore, it is evident why recent
advances in sensing technologies and signal processing, coupled to the increased avail-
ability of computing power, are creating huge expectations in the development of robust
and continuous SHM systems [2].
SHMapplications are often treated as classification problems [3] aiming (i) to distinguish

the damage state of a structure from the undamaged state, starting from a set of available
recordings of a monitoring sensor system, and (ii) to locate and quantify the current
damage. In this framework, we have adopted the so-called simulation-based classification
(SBC) approach [4], and we have exploited deep learning (DL) techniques for the sake
of automatic classification. In our procedure, data are displacement and/or acceleration
recordings of the structural response, and the classification task consists of recognizing
which structural state, among a discrete set, could have most probably produced them.
These structural states, characterized by the presence of damage in different positions and
of different magnitudes, suitably represent different damage scenarios.
To highlight the distinctive components of the SBC approach, we recall the general

paradigm for a SHM system, according to [3]. A SHM system consists of four sequential
procedures: (i) operational evaluation, (ii) data acquisition, (iii) features extraction and
(iv) statistical inference. Operational evaluation defines what the object of the monitoring
is and what the most probable damage scenarios are; data acquisition deals instead with
the implementation of the sensing system; features extraction specifies how to exploit the
acquired signals to derive features, that is, a reduced representation of the initial data, yet
containing all their relevant information—for the case at hand, the onset and propagation
of damage in the structure; statistical inference finally sets the criteria under which the
classification task is performed.
Focusing on stages (ii) and (iii), the vibration-based approach is nowadays the most

common procedure in civil SHM. Its popularity is mainly due to the effective idea that
the ongoing damage alters the structure vibration response [5] and, consequently, the
associatedmodal information. By looking at the displacement and/or the acceleration time
recordings acquired at a certain set of points of a building, the vibration-based approach
enables the analysis of both global and local structural behaviors. The technology required
to build this type of sensor system is mature and can be exploited on massive scale [6]. In
most of the cases, features extraction relies on determining the system eigenfrequencies
and the modal shapes. On the other hand, it might be necessary to employ more involved
outcomes to distinguish between the effect of modified loading conditions and the true
effect of damage [7], for instance by constructing parametric time series models [8]. By
employing DL, we aim at dealing with these aspects automatically.
Two competing approaches are employed in literature to deal with stage (iv), the a)

model-based and the b) data-based approach, both introducing a sort of offline–online
decomposition. By this expression, wemean the possibility to split the procedure into two
phases: first, the offline phase is performed before the structure starts operating; then, the
online phase is carried out during its normal operations.
The model-based approach builds a physics-based model, initially calibrated to simu-

late the structural response. The model is updated whenever new observations become
available and, accordingly, damage is detected and located. Data assimilation techniques
such as Kalman filters have been employed to efficiently deal with model updating [9].
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Model-based approaches are typically ill-conditioned, and many uncertainties related to
the proper tuning of model parameters may prevent a correct damage estimation.
Hence, data-based approaches are becomingmore andmore popular; they exploit a col-

lection of structural responses and, either assess any deviation between real and simulated
data, or assign to the measured data the relevant class label. The dataset construction can
be done either experimentally [10] or numerically; however, the latter option is usually
preferred, due to the frequent difficulties in reproducing the effects of damage in real-
scale civil structures properly. To reduce the computational burden associated with the
dataset construction, simplified models (e.g. mass-spring models for the dynamics of tall
and slender buildings)—still able to catch the correct structural response—are preferred
with respect tomore expensive high-fidelity simulations, involving, e.g., the discretization
of both structural and non-structural elements. By adopting the SBC method, we rely on
a data-driven approach based on synthetic experiments.
Once a dataset of possible damage scenarios has been constructed, machine learning

(ML) proved to be suitable to perform the classification task [6]. The training of the ML
classifier could be:

• supervised, when a label corresponding to one of the possible outputs of the classifi-
cation task is associated to each structural response;

• unsupervised [11], when no labelling is available;
• semi-supervised [12], when the training data only refer to a reference condition.

In the SBC framework, a semi-supervised approach was recently explored, e.g., in [13],
leading to great computational savings and robust results when treating the anomaly
detection task. In spite of their good performances, standard ML techniques based, e.g.,
on statistical distributions of the damage classes (as in the so-called decision boundary
methods), as well as kernel-based methods (e.g. support vector machines), still rely on
heavy data preprocessing, required to compute problem-specific sets of engineered fea-
tures [14]. These features can be statistics of the signal, modal properties of the structure,
or even more involved measures exploiting different types of signal transformation (e.g.
Power Spectral Density and autocorrelation functions, to mention a few) [6]. Some rele-
vant drawbacks arise, since:

• pre-computed engineered features are not well suited for non-standard problems, for
which setting damage classification criteria can be anything but trivial;

• there is no way to assess the optimality of the employed features;
• a computationally expensive pre-processing of a huge amount of data is usually

required.

For these reasons, we rely on deep learning techniques, which allow both data dimen-
sionality reduction and hierarchical pattern recognition at the same time [15,16]. DL
techniques allow us to:

• deal with non-standard problems, especially when different information sources have
to be managed (as long as they are in the form of time series);

• detect a set of features, optimized with respect to the classification task, through the
training of an artificial neural network.
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Despite these advantages, the use of DL for the sake of SHM has been quite limited so far
[17,18].We have therefore decided to employ Fully Convolutional Networks (FCNs) [19],
a particular Neural Network (NN) architecture, to deal with the Multivariate Time Series
(MTS) produced bymonitoring sensor systems. To face different information sources, we
have applied separate convolutional branches and, at a second stage, performed the data
fusion of the extracted information.

SHMmethodology
We introduce in this section a detailed explanation of the proposed strategy to deal with
the SHM problem exploiting a SBC approach. We provide a simplified physics-based
model of the structure employingM degrees of freedom (dofs), assuming to record time-
dependent signals through a monitoring system employing N0 ≤ M sensors. Our aim is
first to train, and then to use, two classifiers Gd and Gl for the sake of damage detection
and localization, respectively, where

Gd : RN0×L0 → {0, 1} , Gl : RN0×L0 → {0, 1, . . . , G} .
In the former case, labels 0 and 1 denote absence or presence of damage, respectively; in
the latter, G > 1 is a priori fixed and denotes the range of possible damage locations—
also in this case, the undamaged state is denoted by 0. We have decided to include the
undamaged state among the possible outputs of Gl not just to confirm the outcome of Gd ,
but also to observe which damage scenarios, identified by their locations, are more often
misclassified with the undamaged state.
The training of Gd and Gl is performed using the two datasets Dd

train and D
l
train, respec-

tively. Each of these two datasets (for simplicity we only consider the formation of Dl
train,

being the process substantially equivalent for Dd
train) collects V

train structural responses,

D
l
train = {U1, . . . ,UV train} ,

under prescribed damage scenarios and loading conditions. We denote by Ui ∈ R
N0×L0 ,

i = 1, . . . , V train, a collection ofN0 sensor recordings of displacement and/or acceleration
time series of length L0, such that

Ui = [u1 (di, li) | . . . | uN0 (di, li)
]
, i = 1, . . . , V train ; (1)

the time series un (di, li) recorded by the n-th sensor depends on the damage scenario di
and the loading condition li, and can be seen as the sampling of a time-dependent signal
un (di, li).Weassume todealwith recordings acquired at a set ofL0 time instantsuniformly
distributed over the time interval of interest I . The damage scenario di : Pd → R

M is
prescribed at each structural element1 and depends on a set of parameters ηd ∈ Pd ⊂ R

D;
the loading condition li : I × Pl → R

M , defined over the time interval I , is prescribed
at each element, too, and depends on a set of parameters ηl ∈ Pl ⊂ R

L. Here, we
denote by Pd and Pl two sets of parameters, yielding the two sets Cd and Cl of admissible
damage and loading scenarios, respectively, obtainedwhen sampling ηd ∈ Pd and ηl ∈ Pl .
During the training procedure, the performances of Gd and Gl are tracked by looking at
their classification capabilities on two datasets Dd

val and D
l
val , each one collecting V val

structural responses Ui (defined as in Eq. (1)), i = 1, . . . , V val .

1 For simplicity, the number E of elements coincides with the number M of degrees of freedom; however, the
generalization to the case in which E �= M is straightforward.
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According to the SBC approach, the datasetsDd
train,D

l
train,D

d
val andD

l
val are constructed

by exploiting a simplified physics-based model of the structure. For any damage scenario
d ∈ Cd and loading conditions l ∈ Cl received as inputs, this numerical model—playing
the role of digital twin of the structure to bemonitored—returns a recorded displacement
and/or acceleration time series rn (d, l). Since these latter are deterministic, to make our
data more conformal to real measurements un (d, l), we assume that each rn (d, l) is
affected by an additive measurement noise εn ∼ N (0,�ε), so that

un = rn (d, l) + εn, n = 1, . . . , N0 . (2)

Here we consider each εn normally distributed, with zero mean and covariance matrix
�ε ∈ R

N0×N0 , as related to a real monitoring system [20]. Regarding the auto-correlation
of the records (j = 1, . . . , L0) of each sensor (n = 1, . . . , N0) in time, we assume them to
be independent and identically distributed.
The background model providing rn (d, l) is here thought as being already tuned to

accurately match the structural response in the undamaged case. Moving away from the
baseline due to damage inception, with the adopted supervised strategy we therefore
assume the possible damage scenarios to belong to a limited set, and for each of them rel-
evant numerical analyses are exploited to mimick the real structural response, as affected
by all the possible uncertainty sources. It should be also added that Eq. (2) accounts for
the noise in the structural response induced by sensor measurements only. Since damage
is a smeared measure of different phenomena occurring at the local scale (including or
accompanied by, e.g. cracking and plasticity), it stands as a variable giving ameasure of the
unresolved dofs in aMori–Zwangzig formalism, see [21]. In a state-space formulation like
the one adopted for Kalman filtering [22], a further source of noise can be added through
the state or model error, which accounts for the uncertainties linked to the unresolved
dynamics of the system. An issuemay thus arise in discerning the two noise sources linked
to the model inaccuracy on one side, and to the sensor output and operational conditions
on the other side. This discussion is indeed beyod the scope of this work, and interested
readers may find relevant information in, e.g. [23,24].
The classifiers Gd and Gl are based on a fully convolutional neural network architecture

(that will be detailed in the following section). The training of the network is supervised,
and performed by feeding the FCN with multivariate time series {Fn

0 }N0
n=1 and associated

labels (0 or 1 for Gd , g ∈ {0, 1, . . . , G} for Gl). In this respect, hereon eachmultivariate time
series {Fn

0 }N0
n=1 is referred to as an instance. In general, {Fn

0 }N0
n=1 = Ui; however, a single

instancemight bemade up toW multivariate time seriesUiw ,w = 1, 2, . . . ,W of different
lengths Lw0 to deal with the case of sensors recording time series of different length. Each
component Fn

0 = un plays the role of input channel for the NN.
The testing of theNN is done on instances {Fn∗ }N0

n=1 = U
∗
i , obtained through the numer-

ical model as structural response

U
∗
i = [u1

(di, l∗i
) | . . . | uN0

(di, l∗i
)]
, i = 1, . . . , V test

to loading conditions l∗i ∈ Cl , i = 1, . . . , V test , unseen (that is, associated to testing values
ηl from Pl not sampled) when building the datasets Dd

train, D
l
train, D

d
val and D

l
val . All these

instances are collected into two datasets Dd
test and D

l
test .

The testing is done by verifying the correct identification of the class ({0, 1} for Gd ,
{0, 1, . . . , G} for Gl) associated with the simulated signals. In concrete terms, a probability
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Fig. 1 SBC + FCN classifier. The offline phase is performed before the start of operations of the structure,
while the online stage during its normal operations

is estimated for each possible class, thus yielding the confidence level that the given class
is assigned to the data, and the class with highest confidence is compared with the one
associated to the simulated signal. No k-fold cross validation is used.
Once tested, Gd and Gl can make a prediction once a new signal {Fn∗ }N0

n=1 = U
∗ is

experimentally acquired from the real sensor network used to monitor the structure.
Let us now recap the procedure steps exploiting the schematic representation reported

in Fig. 1. For the sake of convenience, we can split our procedure into:

• an offline phase, where, as first step, the loading conditions Cl (OFF-1#1) and the
most probable damage scenarios Cd are evaluated (OFF-1#2). Accordingly, a sensor
network with N0 sensors is designed (OFF-2). The datasets Dd

train, D
l
train, D

d
val , D

l
val ,

D
d
test and D

l
test are then constructed (OFF-3) by exploiting the physics-based digital

twin of the structure. The classifiers Gd (OFF-4#1) and Gl (OFF-4#2) are therefore
trained by using Dd

train and D
l
train and performing the validation using Dd

val and D
l
val .

Finally, the classification capacity of Gd and Gl is assessed by using numerically sim-
ulated signals {Fn∗ }N0

n=1 = U
∗ belonging to D

d
test and D

l
test , respectively (OFF-5#1 and

OFF-5#2);
• an online phase, in which for any new signal {Fn∗ }N0

n=1 = U
∗ acquired by the real

monitoring system and provided to the classifiers (ON-1), damage detection (ON-2)
is performed through Gd , and damage localization is performed through Gl (ON-3).

In lack of recordings coming from a real monitoring system, and having assumed the
experimental signalsU∗ equal to the noise-corrupted output of the numericalmodel, steps
OFF-5#1 and OFF-5#2 of the offline phase indeed coincide with steps ON-2 and ON-3 of
the online procedure.2 We highlight that only those damage scenarios d ∈ Cd that have
been numerically simulated in the offline phase can be classified during the online phase.
Moreover, damage is considered temporary frozen within a fixed observation interval,

2 For this reason, the acquired signals are denoted with the same notation U
∗ employed for the recordings

previously used to test the FCN to highlight that, for the time being, the experimental signals are taken as
realizations of the noise-corrupted outputs of the numerical model.
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Fig. 2 FCN architecture in the case of a single data type. Here N0 represents the number of input channels
and N represents the adopted number of filters. For sake of clarity, the dimensionality of the building blocks
has been enhanced: a three-dimensional parallelepiped is used to depict the two-dimensional output of
each convolutional layer; a two-dimensional rectangle is used to depict the one-dimensional output of the
global pooling layer and of the softmax layer

enabling to treat the structure as linear [2]. To model the effect of damage, we consider
the stiffness degradation of each structural member; this assumption is acceptable if the
rate of the evolving damage is sufficiently small with respect to the observation interval
[25].
It is not possible to identify from the beginning the most suitable number of instances

V train to be used to train the network. The easiest procedure (even if time-consuming)
would be to assess the performances of Gd and Gl for different sizes V train, aiming at
finding a trade-off between the computational burden required to construct the dataset
and train the NN, and the classification capabilities. Beyond a certain critical size, massive
dataset enlargementsmight lead to small improvements in theNNperformance, as shown
in our numerical results.
Finally, concerning the setting of the loading conditions Cl , in this work we have (i)

identified a set of possible loading scenarios that can significantly affect the response of
the structure; (ii) subdivided this set into a certain number of subsets, representative of
different possible dynamic effects of the applied load; (iii) sampled each subset almost the
same number of times.

Fully convolutional networks
Neural network architecture

We now describe the FCN architecture employed for the sake of classification. As dis-
cussed in the previous section, {Fn

0 }N0
n=1 are the inputs adopted during the training phase

(for which we know the instance label associated), while {Fn∗ }N0
n=1 are the inputs that we

require the FCN to classify.
We have adopted a FCN stacking three convolutional layers Li, i = {1, 2, 3}, with

different filter sizes hi, followed by a global pooling layer and a softmax classifier (the
choice of the NN hyperparameters will be discussed in the following). Each convolutional
layer Li has been used together with a Batch-Normalization (BN) layer Bi and a Rectified
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Fig. 3 FCN architecture in the case of two data types. Here N1
0 and N2

0 represent the number of input
channels (possibly different) of the two NN branches; N1 and N2 represent the number of filters adopted. For
sake of clarity, the dimensionality of the building blocks has been enhanced: a three-dimensional
parallelepiped is used to depict the two-dimensional output of each convolutional layer; a two-dimensional
rectangle is used to depict the one-dimensional output of the global pooling layer and of the softmax layer

LinearUnit (ReLU) activation layerRi [14,19], see Fig. 2.When the input signals aremade
up byW multivariate time series with different length:

{Fn
0 }N 1

0 +...+Ni
0+...+NW

0
n=1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{Fn
0 }N 1

0
n=1 = Ui1 ∈ R

N 1
0 ×L10

{Fn
0 }N 1

0 +N 2
0

n=N 1
0 +1 = Ui2 ∈ R

N 2
0 ×L20

...

{Fn
0 }N 1

0 +...+NW
0

n=N 1
0 +...+NW−1

0 +1
= UiW ∈ R

NW
0 ×LW0

,

for each one we first adopt the described convolutional architecture separately and then,
through a concatenation layer, we perform data fusion on the extracted features. Classi-
fication is finally pursued through a softmax layer. The corresponding NN architecture is
sketched in Fig. 3 in the case of time series with two different lengths L10 and L20, but can
be easily generalised. Tensorflow [26] has been used for the sake of NN construction.

Use of convolutional layers

Let us now show how convolutional layers can be adopted to extract features from mul-
tivariate time series. {Fn

0 }N0
n=1 are provided to the 1-st convolutional layer L1. The output

of L1, {Fn
1 }N1

n=1, still shaped as time series (of length L1), do not represent displacement
and/or acceleration anymore. Indeed, they are features extracted from the input channels
{Fn

0 }N0
n=1. The following layers operate in the same manner: the outputs {Fn

i }Ni
n=1 of the
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Fig. 4 Sketch of a 1D convolutional layer. Here hi specifies the kernel dimension. As a filter is associated to
each feature map n, to represent it bars of different heights are used in relation to the amplitude of the filter
weights

(i − 1)-th convolutional layer Li−1 are the inputs of the i-th convolutional layer Li and
become features of higher and higher level.
In concrete terms, the tasks performed by the i-th convolutional layer Li are: the sub-

division of the inputs {Fn
i−1}Ni−1

n=1 into data sequences, whose length hi determines the
receptive field ofLi; and themultiplication of each data sequence by a set of weightsw(i,m)

called filter, where the output Fn
i of each filter is called feature map. Mono-dimensional

(1D) receptive field must be used in time series analysis, being each channel monodi-
mensional. In Fig. 4 the fundamental architecture of Li is depicted, linking the inputs
{Fn

i−1}Ni−1
n=1 and the outputs {Fm

i }Ni
m=1 through:

z(i,m)
h =

hi−1∑

q=0

Ni−1∑

n=1
w(i,m)
q x(i−1,n)

p + b(i,m) with p = h + q , (3)

where:

• z(i,m)
h is the h-th entry of Fm

i ;
• b(i,m) is the bias of Fm

i ;
• x(i−1,n)

p is the p-th entry of Fn
i−1;

• w(i−1,n)
q is the q-th connection weight of the m-th filter applied to the p-th input of

Fn
i−1.

As the goal of stacking several convolutional layers is to provide nonlinear transfor-
mations of {Fn

0 }N0
n=1, their overall effect is to make the classes to be recognised linearly

separable [27]. In this way, a linear classifier is suitable to carry out the final task. Every
nonlinear transformation can be interpreted, as discussed, as an automatic extraction of
features.
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Batch Normalization, ReLU activation, global pooling and softmax classifier

The Batch Normalization (BN) layer Bi is introduced after each convolutional layer Li to
address the issue related to the vanishing/exploding gradients possibly experienced during
the training of deep architectures [28]. It relies on normalization and zero-centering of
the outputs {Fn

i }Ni
n=1 of each layer Li. We express the output of Bi as {Fn

Bi}Ni
n=1. For the

same reason, the ReLU activation function is preferred instead of saturating ones [29].
The ReLU layerRi transforms {Fn

Bi}Ni
n=1, through

Fn
Ri (u) = max

(
0,Fn

Bi (u)
)

with u = 1, . . . , Li .
where:

• Fn
Bi (u) is the u-th entry of the n-th feature map of Bi;

• Fn
Ri (u) is the u-th entry of the n-th feature map ofRi.

In the adopted FCN architecture, the features to be used in the classification task are
extracted from {Fn

0 }N0
n=1 by the blocks {Li + Bi + Ri}3i=1. The final number of features

equals the number N3 of filters of the last convolutional layer. By applying next a global
average pooling [30], the extracted features {Fn

R3}N3
n=1 are condensed in a single channel

b ∈ R
G , being G the total number of classes.

The softmax activation layer finally performs the classification task. First, the channel b
is mapped onto the target classes, by computing a score sg

sg (b) = θTg · b, g = 1, . . . , G , (4)
for each class g , where the vector θg ∈ R

G collects the weights related to the g-th class.
The softmax function is then used to estimate the probability pg ∈ [0, 1] that the input

channels belongs to the g-th class, according to:

pg = esg (b)
∑G

j=1 esj(b)
g = 1, . . . , G . (5)

The input channels {Fn
0 }N0

n=1 are then assigned to the class with associated label g featur-
ing the highest estimated probability pg , which then represents the estimated confidence
level that class g is assigned to the data.

Neural Network training

The NN training consists of tuning the weights w(i,n) and θg , respectively appearing in
Eqs. (3) and (4) by minimizing a loss function depending on the data. In this respect, the
Adam optimization method [31], a widespread stochastic gradient-based optimization
method, has been used. For classification purposes, the most commonly adopted loss
function is the cross entropy, defined for the classifier Gd as:

Jd (Y ,p) = − 1
V train

V train∑

i=1

G∑

g=1
ygi log

(
pg

)
, (6)

where:

• g is the label of the instance provided to the NN during the traning;
• ygi ∈ {0, 1} is the confidence that the i-th instance should be labelled as the g-th class,

with

ygi =
⎧
⎨

⎩
1 if for the i-th instance the g-th class is the target class

0 otherwise;
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• Y ∈ {0, 1}V train collects all the ygi confidence values;
• p ∈ R

G collects the estimated probabilities pg , see Eq. (5).

The loss function Jl (Y ,p) for the classifier Gl is defined analogously.
Regarding the employed datasets:

• D
d
train is used to train the NN by back-propagating the classification error;

• D
d
val is used to possibly interrupt the training in case of overfitting, but not to modify

the NN weights;
• D

d
test is used to verify the prediction capabilities of the NN, after the training phase

has been performed.

The same splitting applies to the data used for training Gl . In order to assess the offline
phase of the proposed procedure, we have tested Gd and Gl on their respective test sets
D
d
test andDl

test (steps OFF5#1 andOFF5#2 of Fig. 1). The number of timesDd
train andD

l
train

are evaluated during the training of Gd and Gl corresponds to the number of epochs: in
this work, we have bounded to 1500 the maximum number of epochs allowed. We have
also provided the possibility of an early-stop of the training when, after having performed
at least 750 epochs, the validation loss has not decreased three times in a row.
To control the training process, a learning rate ξ is usually introduced to scale the

correction of the NN weights provided by back-propagating the classification error. In
out case, the learning rate has been forced to decrease linearly with the number of epochs,
moving from 10−3 at the beginning of the training till 10−4 at its end [32]. After having
performed at least 750 epochs, an additional factor ζ = 1/ 3√2 is used to scale down
the learning rate if the loss function J (Y ,p) is not reduced within the successive 100
epochs, as suggested in [32]. Random subsamples (also called minibatches) of the data
points belonging to the training set are employed for the sake of gradient evaluation when
running the Adam optimization method [27,31].

Hyperparameters setting

The setting of the NN hyperparameters, namely the dimensions of the kernels hi and
the number of feature maps Ni, is done according to [14,32]. In this work, we choose
h1 = 8, h2 = 5, h3 = 3 as kernel dimensions for the three convolutional layers. Since
no zero-padding has been employed, the dimension of the time series is progressively
reduced passing through the convolutional layer Li from Li−1 to Li = Li−1 − hi + 1.
Accordingly, considering the parameters and the length of the time series used in this
work, the dimension reduction related to a single convolutional layer is on the order of
1%. We have verified that the classification accuracy is barely affected by this reduction
and, more in general, by the use of the zero-padding. It is possible to further improve the
NN performances by operating a (necessarily problem-dependent) finer tuning of the NN
hyperparameters, but only at the cost of a time-consuming repeated evaluation of the NN
outcomes.
The number of filters Ni to be adopted depends on the complexity of the classification

task: the more complex the classification, the higher the number of filters needed. How-
ever, increasing the number of filters beyond a certain threshold, which depends on the
problem complexity and the task to be performed, has no effects on the prediction capa-
bilities of the NN; indeed, the risk would be to increase computational costs, and to overfit
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Fig. 5 Linear elastic shear model of an eight-story building with constant story mass and constant story
stiffness

the training dataset. Therefore, it looks convenient to initially employ a small number of
filters, and then increase it if theNNperforms poorly during the training phase. A possible
choice suggested in [14] is to consider N1 = 128, N2 = 256, and N3 = 128 as a suitable
choice, independently of the dataset to be analysed. Here we have kept the proportion
N1 = N , N2 = 2N , and N3 = N as filter sequence, and verified that increasing N beyond
N = 16 does not affect the NN performances. To carry out the comparison of FCN archi-
tectures with one or two convolutional branches, we have kept N = 16 independently of
the classification task.

Numerical results
Dataset construction

The proposed methodology is now assessed through the numerical benchmark shown
in Fig. 5, and originally proposed in [33]. No real experimental measurements have been
allowed for in the analysis; measurement noise has been instead introduced by corrupting
the monitored structural response with uncorrelated random signals featuring different
Signal to Noise Ratio (SNR) levels, to also assess the effect of sensors accuracy on the
capability of the proposed approach. Further details are provided below.
The considered structure is an idealised eight-story shear building model, featuring a

constant floor mass of m = 625 t and a constant inter-story stiffness of ksh = 106kN/m.
The proposed SHM strategy has been designed to handle signals related to different
types of damage-sensitive structural responses characterized by different magnitude and
sampling rate. Hence, in the following both the horizontal and the verticalmotions of each
story are allowed for and recorded. The longitudinal stiffness of the columns has been set
to kax = 108kN/m, and a slenderness (given by the ratio their length and thickness) of
10 has been assumed for the same columns. The numerical model employsM = 16 dofs
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(8 in the x direction and 8 in the z direction), and N0 = 16 virtual sensors are used to
measure the noise-free displacements rn (collecting both horizontal displacements rn,
n = 1, . . . , 8, and vertical displacements rn, n = 9, . . . , 16 the vertical displacements) at
all the story levels. Although a non-classical damping was originally proposed in [33], the
relevant effect on system identification or model update has shown to be marginal if the
structure is continuously excited during the monitoring stage, see e.g. [2,34]. Therefore,
in this feasibility study no damping has been taken into account. The dofs are numbered
from 1 for the ground floor up to 8 for the eighth floor in both directions.
Due to the building geometry, eight different damage scenarios d(1), . . . ,d(8) can be

considered, each one characterized by a reduction of 25% of one inter-story stiffness only,
that is,

d (g) =
{
0.75kj if j = g or j = g + 8
kj otherwise

where

kj =
{
ksh if j = 1, . . . , 8
kax if j = 9, . . . , 16.

The label g is used to denote each damage scenario, ranging from 1 for the first floor up
to 8 for the eighth floor; by convention, d(0) refers to the undamaged case.
Before assessing the classification capability of the NN, a parametric analysis has been

carried out to check the sensitivity to damage of the vibration frequencies. Table 1 collects
the results regarding the horizontal motion; for the analysed system, the axial frequencies
can be obtained by scaling the reported frequencies by a factor 10. Any considered damage
state reduces all the frequencies, though the variation is rather limited evenwith a stiffness
reduction by 25%, see Table 1. The capability to perform damage localization just by
exploiting these data can be largely ineffective, since some trends in the table, such as the
monotonic dependence of the frequencies of a vibration mode on the damage inter-story,
can be hardly recognized.
As proposed in [2,25], the shape of the vibration modes—in particular that of the

fundamental one in the case of a building featuring constant mass and stiffness at each
story as for the case at hand—should be taken into account in the analysis, in order to
localise and quantify damage. As previously remarked, employing FCN allows us not only
to analyse separately each recorded signal, but also to exploit their interplay. Moreover,
even if the sensitivity to damage of displacements in horizontal and vertical directions
is the same, their joint use enabled by the FCN can lead to an improvement of the NN
performances.
Due to the different range of values of vibration frequencies in the case of horizontal

or vertical excitation of the structure, the axial response turns out to be richer in high-
frequency vibrations. To correctly record the signals, the sampling rates have been set to
66.7Hz tomonitor thehorizontal vibrations, and667Hz tomonitor the vertical vibrations.
Even for the higher vibration frequencies, output signals are assumed to be not distorted
by the accelerometers: the transfer function of the sensor itself has to be very close to 1 for
frequencies up to the mentioned values, so that the amplitude of sensor output very well
matches the real structural response to be locally measured. If the structural vibration
frequencies or the sampling rates get too close to the internal resonance frequency of the
sensor, for some specific applications different, ad-hoc designed devices will be selected.
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Table 1 Shear vibration frequencies of the considered eight-story building, for the
undamaged case (0) and under different damage scenarios, each one featuring a reduction
by 25% of the stiffness at the inter-story corresponding to the scenario label

Mode Shear frequencies (Hz)

Damage scenario

0 1 2 3 4 5 6 7 8

1 1.175 1.131 1.134 1.140 1.146 1.154 1.162 1.169 1.173

2 3.484 3.368 3.427 3.480 3.467 3.400 3.355 3.375 3.445

3 5.678 5.522 5.668 5.570 5.467 5.614 5.647 5.488 5.522

4 7.673 7.521 7.630 7.401 7.663 7.448 7.532 7.600 7.394

5 9.409 9.287 9.143 9.322 9.126 9.362 9.114 9.396 9.105

6 10.825 10.745 10.471 10.764 10.665 10.490 10.812 10.528 10.598

7 11.873 11.833 11.659 11.510 11.750 11.857 11.596 11.560 11.755

8 12.516 12.505 12.456 12.378 12.273 12.227 12.328 12.421 12.484

In the analysis, each instance is made up by two multivariate time series, one for each
excitation type, referring to different time intervals: I = [0, 10]s for the shear case and
I = [0, 1]s for the axial case, respectively. Accordingly, the time series lengths are equal to
L10 = 667 and to L20 = 667 for both the displacements in x and z direction. This benchmark
has been exploited to test the FCN architecture with either one convolutional branch or
two convolutional branches (see Figs. 2 , 3). Indeed, what we are going to assess is the
NN ability to perform the fusion of the information extracted through the concatenation
layer, rather than the capacity to deal with time series of different lengths.
Two load types have been considered: first, we have excited the structure with lateral

and vertical loads applied at each story and characterised by narrow frequency ranges,
randomly sampled from an interval including, but not limited to, the structural frequen-
cies; then we have applied, once again at each story, a white noise, assessing both the case
in which all the shear frequencies have been excited, and the one in which just some of
them have been covered by the noise frequency spectrum. With these two load types, we
have been able to assess the NN performances in two different cases:

• case 1 (sinusoidal load case), in which the applied load is characterized by only few (a
priori, random) frequencies;

• case 2 (white noise load case), in which the applied load is characterized by a higher
number of (a priori, random) frequencies, lying in a given range.

This latter case corresponds to the one of random vibrations, for instance due to low-
energy seismicity of natural or anthropic (urban) source [35], and is frequently adopted
in literature, see e.g. [36]; the characteristic frequency range of seismic vibrations is site-
dependent, being determined by the geographical and geological properties of the site. For
example, in deep soft basins, the seismic vibrations are richer in low frequency components
with respect to the ones in rock sites. For this reason, without any site characterization, it
makes sense to assumemore than a single frequency spectrum for the random vibrations.

Case 1 (sinusoidal load case)

In this first analysis, two different load combinations in the horizontal (x) and vertical
(z) directions have been considered, to affect both the shear and axial vibration modes of
the building. For each direction, the loads applied to the stories of the structure are given
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Table 2 Adopted random generation rules for the parameters η1shl and η1axl tuning the
frequency and themagnitude of the applied sinusoidal load components in the x (a) and z
(b) directions respectively

Parameter Measurement unit Adopted random generation rule

(a) x direction

f sh Hz {takerand ([1, 2.75, 4.5, 6.25, 8, 9.75, 11.5, 13.25, 15])

·
(
randn(0,

√
2)

)
}

γ sh − {γ dof
i · randn(0,1)} with γ dof

i = γ dof (i) and

γ dof = [0.13, 0.25, 0.38, 0.50, 0.63, 0.75, 0.88, 1.00] and i

is the dof label

(b) z direction

f ax Hz {takerand ([10, 27.5, 45, 62.5, 80, 97.5, 115, 132.5, 150])

· (2randn(0,1))}
γ ax − {randn(0,1)}

Here, we indicate with randn(0, σ ) the sampling from a Gaussian probability distributionN (
0, σ 2), where σ 2 is its variance,

and with takerand([v]) the uniform sampling from the discrete set of values [v]

by the sum of two sinusoidal functions, whose amplitudes and time variations have been
randomly generated. This expression for the load has been adopted to keep its description
simple and, in comparison with single sinusoidal component case, to increase the set of
frequencies that excite the structure. The applied load l = [lsh, lax] reads:

lshi
(
t, ηshl

)
=

2∑

j=1
Fsh
i γ sh

i,j sin(2π f
sh
j t), i = 1, . . . , 8 ,

laxi
(
t, ηaxl

) =
2∑

j=1
Fax
i γ ax

j sin(2π f axj t), i = 1, . . . , 8 ,

where: lshi
(
t, ηshl

)
and laxi

(
t, ηaxl

)
are the amplitudes of the horizontal and vertical loads

acting on the i-th floor; Fsh
i = 104 kN and Fax

i = 103 kN are scaling parameters used
to set the magnitude of the applied loads; ηshl = [γ sh, f sh] and ηaxl = [γ ax, f ax]; γ sh ∈ R

and γ ax ∈ R are random scaling factors; f sh, f ax > 0 set the frequencies of the sinusoidal
components (see Table 2 for the adopted random generation rules).
The two sets of values adopted for the generation rule of f sh and f ax are chosen on the

basis of the structural frequencies that could be excited both in the horizontal and vertical
directions. At the same time, thanks to the adopted sampling rule, f sh and f ax may exceed
these frequency ranges, producing instances in which the shear frequencies and/or the
axial frequencies of the structure are not excited. Regarding the generation rule of the
scaling parameter γ sh, its dependency on the dofs of the structure through the factor γ dof

has been introduced in Table 2 in order to mimic the load distribution usually considered
in apreliminarydesignprocess,when the shear behaviourof a regular building is evaluated.
Keeping in mind that our principal interest here is to assess the prediction capacities of
the NN architecture, this choice has enabled us to obtain displacement time series similar
to the ones expected during the monitoring of the structure, although adopting a very
simple generation rule for the applied lateral loads. Some examples of the time evolutions
of the generated loads, applied to the first floor of the structure (hence of lsh1 and lax1 ), are
shown in Fig. 6.
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Fig. 6 Examples of time evolutions of the loads (case 1) applied to the first floor of the building in the x (left
column) and z (right column) directions. For the sake of visualisation, the sketched time interval for the loads
applied in the x direction has been restricted to I = [0, 2.5] s

Through Eq. (2), we have added a measurement noise to mimic the output of a real
monitoring system. For the sake of simplicity, the covariance matrix �ε ∈ R

16×16 of
such noise has been assumed to be diagonal, i.e. �ε = σ 2

I where σ 2 is the variance
of the measurement error ε in the horizontal and vertical directions for each floor, and
I ∈ R

16×16 is the identity matrix.
Two sources of randomness have been assumed for the noise, due to environmental

effects and to the transmission of the electrical signal. Their effects are superimposed in
the covariance matrix with diagonal entries respectively amounting to σ 2

env and σ 2
el .

The environmental noise has been assumed to induce vibrations of the same amplitude
and/or to affect in the same way the converted electrical signals, independently of the
building floor. Given that horizontal motions at the top of the buildings are in general
greater than displacements at the lower levels, this assumption leads small amplitude
signals to be more affected, in relative terms, by the environmental noise. This is reason-
able if we assume that the localised disturbances that arise because of the surrounding
environment have the same magnitude indipendently of the building levels.
Regarding the electrical disturbance, the same noise level has been assumed both in

directions x and z, in spite of the usually different technical specifications for sensors
measuring displacements with different magnitude. This means that the electrical distur-
bances have the same effect, in statistical terms, on the measurement outcomes in the
horizontal direction ushi and in the vertical direction uaxi . Figures 7 and 8 respectively
show examples of time evolutions of horizontal and vertical displacements, to highlight
the effects of the above assumptions on the structural signals. These displacement com-
ponents always refer to the undamaged case, and to the load conditions specified in the
captions. According to what highlighted, it is noted that the displacements of the 8th story
are less affected by noise than the ones of the 1st story.
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Fig. 7 Example of time evolutions of x displacements for stories 1, 4, 8 with SNR= 15 dB (from a–f) and
SNR= 10 dB (from g–l), undamaged state. Low-noise case: f sh1,2 = (21.1, 69.2), γ sh

1,2 = (−0.058,−0.199).

High-noise case: f sh1,2 = (14.5, 2.36), γ sh
1,2 = (0.025,−0.159). Orange lines represent u, whereas black lines stand

for r , according to Eq. (2). On the right side, a closer view for each left side plot is reported
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Fig. 8 Example of time evolutions of z displacements for stories 1, 4, 8 with SNR= 15 dB (from a–f) and
SNR= 10 dB (from g–l), undamaged state. Low-noise case: f ax1,2 = (32.8, 28.2), γ ax

1,2 = (1.38, 1.38). High-noise
case: f ax1,2 = (15.5, 22.0), γ ax

1,2 = (1.133,−1.140). Orange lines represent u, whereas black lines stand for r ,
according to Eq. (2). On the right side, a closer view for each left side plot is reported
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Fig. 9 Example of time evolutions of displacements in the x direction of the 8-th story for SNR= 10 dB, with
f sh1,2 = (14.5, 2.36), γ sh

1,2 = (0.025,−0.159), in the undamaged scenario (a) and all possible damage scenarios
(b–i). Orange lines represent u, whereas black lines stand for r , according to Eq. (2). To show the effects of
damage on the structural dynamics, the black dotted lines in b–i report the noise-free structural dynamics
related to the undamage scenario

Due to the random generation of the applied load, different structural frequencies are
excited in each simulation. To provide different scenarios also in terms of sensor accuracy
(see also [37]), two levels of SNR of 15 dB and 10 dB have been adopted. The SNR is a
summary indicator, referring to the overall level of noise corruption for the displacements
in one direction. Still referring to Figs. 7 and 8, differences in terms of corruption levels
between the two sensor accuracy scenarios can be appreciated.
To build the dataset required for the NN training, the procedure described so far has

been adopted for all the damage scenarios. Figures 9 and 10 respectively show the effects
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Fig. 10 Examples of time evolutions of displacements in the z direction of the 8-th story for SNR= 10 dB,
with f ax1,2 = (15.5, 22.0), γ ax

1,2 = (1.133,−1.140), in the undamaged scenario (a) and all possible damage
scenarios (h–i). Orange lines represent u, whereas black lines stand for r , according to Eq. (2). To show the
effects of damage on the structural dynamics, the black dotted lines in h–i report the noise-free structural
dynamics related to the undamage scenario

of damage on ush8 and uax8 , highlighting the sensitivity of this output to the handled damage
state. To better highlight this sensitivity, the time evolutions in Figs. 9 and 10 are provided
for I = [0, 2.5]s and I = [0, 0.25]s only, even though I = [0, 10]s and I = [0, 1]s have been
adopted for the NN training. Drifts from the responses relevant to the undamaged case
can be observed when the damage scenarios refer to the stiffness reduction of the lowest
stories; however, it looks nearly impossible, in general, to perform any classification of the
damage scenarios without any effectively trained classifier.



Rosafalco et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:38 Page 21 of 31

Fig. 11 White noise load case, fmin = 15 and fmax = 17 Hz. Time evolutions (left column) and Power Spectral
Density (right column) of the forces applied to all the building stories in x (first row) and z direction (second
row)

Fig. 12 White noise load case, fmin = 5 and fmin = 7 Hz. Time evolutions (left column) and Power Spectral
Density (right column) of the forces enforced to all the building stories in x (first row) and z direction (second
row)

Case 2 (white noise load case)

In the second load case we have accounted for random vibrations caused e.g. by low-
energy seismicity [36]. The applied loads l = [lsh, lax], with i = 1, . . . , 8, at each floor and
each time instants are obtained by first sampling out the values from a normal distribution
N (

0, 104
)
and then low-pass filtering them with a “roll-off” set between frequencies fmin

and fmax. Two different scenarios have been considered for the frequency range of the
applied excitations: fmin = 15 and fmax = 17 Hz; fmin = 5 and fmax = 7 Hz. In the first
case all the shear modes and the first axial mode have been excited; in the second case,
just the first three shear modes and no axial frequencies have been excited, see Table 1.
Figures 11 and 12 respectively provide an overview of the simulated forces for the two
cases.
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Dataset composition and NN training

Wenow detail the construction of the employed datasets and theNN training phase. Each
of the two classifiers has been trained on a different dataset, made by instances generated
by evaluating the physics-based model for different loading and damage conditions. Each
instance is made up byN0 = 16 time series recordings of displacements (in the two direc-
tions, for each of the 8 floors) of length L0 = 667. Due to the assumed shear-type behavior
of the building, all the points belonging to each rigid floor share the same accelerations
and displacements; hence, there is no need to plug-in specific optimal strategies to locate
sensors in the network, which could be instead of interest in case of very localized damage
events breaking the validity of the rigid floor assumption.
Two global datasets Dd and D

l made by V = 4608 instances each have been generated,
and then split onto a training, a validation and a testing set, thus yielding Dd = D

d
train ∪

D
d
val ∪ D

d
test and D

l = D
l
train ∪ D

l
val ∪ D

d
test , with V = V train + V val + V test in both cases.

For the splitting of the datasetDd into trainingDd
train, validationD

d
val and testD

d
test sets,

no specific rules are available, andonly someheuristics canbeused– see, e.g., [27].Wehave
thus employed 75% ofV to train and validate the NN (V train andV val), and the remaining
25% (V test ) to test it. Within the first subset, 75% of the instances have been in turn
allocated for training, and the remaining 25% for validation. The final dataset subdivision
then reads: V train = 56.25%V , V val = 18.75%V , and V test = 25%V . The splitting of Dl

has been done identically. The large number of instances employed for validation and test
has allowed us to perform a robust assessment of the NN generalization capabilities. This
has been done without limiting the information content that can be employed for the NN
training; in fact, the dataset dimensions can be arbitrarily enlarged, if necessary, through
a synthetic generation of the new instances, still keeping the same proportions.
During the training, an equal number of instances V train

g = V train/G related to each
damage scenario g = 0, . . . , 8 (the undamaged case has been considered, too, in addition
to the G = 8 possible cases of damage) have been provided to the NN, to avoid the
construction of a biased dataset Dd

train; the same has been done for Dl
train. In this way,

we indeed prevent the NN to be prone to return the class labels that have been more
frequently presented in the training stage.
There are no specific rules to setV train

g (and, therefore, the overall dimensionVg = V /G
of simulated cases for eachdamage scenario) a priori.Only few theoretical studies provided
some recommendations for specific cases, see, e.g., [38]; however, they are not applicable
to FCNs. In general, the problem complexity and the employed NN architecture must be
taken into account on a case-by-case basis. For this reason, we have evaluated the Gd and
Gl classifiers accuracies Ad and Al on the validation set Dd

train and D
l
train, and the training

time at varying V train
g . We have then chosen the best dataset size according to a tradeoff

between the two aforementioned indicators, and keeping in mind that the time required
to generate a dataset and to train the NN both scale linearly with V train

g . The Gd classifier
accuracy is defined as the ratio Ad = V val

� /V val , where V val
� is the number of instances

of Dl
val which are correctly classified by Gd ; the Gl classifier accuracy Al is defined in a

similar way.
Let us now see how we have determined the overall dataset size V by applying the

heuristic approach previously discussed. In Fig. 13, the accuracy Al at varying values of
Vg is reported, by considering the local case 1. By increasing Vg from 256 to 384, Al is
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Fig. 13 Damage localization, case 1. Dependence on Vg of the accuracy Al of the classifier Gl

highly affected, while a further increasing yields a smaller gain in accuracy. The non-
monothonic variation of Al with respect to Vg is due to the randomness of the procedure,
and in particular to the initialization of the weights of the convolutional filters. For the
above reasons, we have adopted Vg = 512 during the training phase.
Treating the damage detection task for case 1, a total number of V = 9216 instances

have been generated. Half of the instances refers to the undamaged conditions, half to
damaged conditions. Each damage scenario is equally represented (Vg = 512 instances
each). Regarding instead the damage localization task,V = 4608 andVg = 512 (including
the undamaged case g = 0) have been adopted.
Still adopting the discussed heuristic criterion for the determination of the overall

dataset dimension, V = 4096 has been used for the damage detection task when the
white noise load case is treated. Once again, half of the instances refers to the undam-
aged conditions, half to the damage condition. Each damage scenario is equally repre-
sented (Vg = 128 instances each). Regarding the damage localization task, V = 4608 and
Vg = 128 (including the undamaged case g = 0) have been adopted.

Classification outcomes

We now report the numerical results obtained for the two load cases, and for the two
required tasks of damage detection and damage localization. The obtained classifica-
tion outcomes are affected by the NN architecture, either with one or two convolutional
branches, depending on whether the horizontal and vertical sensing are both considered
or not. In particular, when treating the damage localization task in presence of the white
noise load condition, we will also try to assess the impact of each input channelFn

0 on the
overall NN accuracy.
Useful indications about the quality of the training can be derived from the behavior of

the loss functions Jd (Y ,p) and Jl (Y ,p)—see Eq. (6)—of Gd and Gl , and of the accuracies
Ad and Al on the training and validation sets (Dt

train and D
t
val for Gd ; Dtrain and Dval for

Gl) as a function of the number of iterations. This latter depends on both the number of
epochs and the minibatch size chosen for the training.3

3 In other words, if the dataset is composed by 100 instances and a minibatch size of 10 instances is adopted,
after the first epoch the iteration number is equal to 10.
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Table 3 Damage detection, case 1

SNR (dB) {F∗} Ad
15 {ush

i }8i=1 0.814

15 {uax
i }8i=1 0.850

15 {ush
i }8i=1 and {uax

i }8i=1 0.879

10 {ush
i }8i=1 0.768

10 {uax
i }8i=1 0.775

10 {ush
i }8i=1 and {uax

i }8i=1 0.765

Accuracy Ad of the classifier Gd evaluated onD
d
test

To evaluate the NN performances, the adopted indices are still Ad and Al , yet evaluated
on D

d
test and D

l
test . These indices are always compared against the ones produced by a

random guess, equal to 0.5 for Gd , and to 1/9 = 0.111 for Gl . For the damage localization
case, themisclassification ismeasured by a confusionmatrix inwhich the rows correspond
to the target classes and the columns to the NN predictions.

Damage detection and localization in case 1—sinusoidal load case

In Table 3 the accuracies Ad of Gd on D
d
test for the two considered noise levels (SNR= 15

dB and SNR= 10 dB) are reported. NN architectures with both one and two convolutional
branches have been tested.
The classifier Gd reaches Ad = 0.879 for SNR= 15 dB and Ad = 0.775 for SNR= 10 dB.

These outcomes obtained on high-noise datasets show the potentialities of the proposed
approach in view of facing real engineering applications. Indeed, noise effect is a principal
concern especiallywhenpervasive and low-costmicroelectromechanical systems (MEMS)
sensor networks are employed [39], so that the possibility to handle it through FCNs may
enhance the application ofMEMS networks. Moreover, thanks to our procedure, we have
been able to avoid the data pre-processing required by anyMLapproach based on problem
specific features.
Figure 14 reports the evolution of the training and validation loss for the dataset with

SNR= 15 dB andSNR= 10 dB.The iteration number accounts for the number of times the
NNweights aremodified during the training process. The depicted training and validation
loss functions refer to the case in which a two branches convolutional architecture has
been employed to detect damage.The several spikes observedboth in the loss and accuracy
graphs are due to the stochastic nature of the training algorithm. During the early stages
of the training, the NN displays the most significative gains in terms of classification
accuracy, while further increasing the number of iterations only yields a limited effect
on the generalization capabilities of the NN. Due to the lack of improvements, the early-
stopping criterion has finally terminated the training.
Moving to the damage localization task, Table 4 collects the results related to the out-

comes of Gl on D
l
test obtained for two different noise levels.

The results show that the NN performances benefit from the employment of a two
branches architectures: Al increases, compared to the best outcome of the single convo-
lutional layer architecture, from 0.769 to 0.812 for the SNR= 15 dB case, and from 0.654
to 0.707 for the SNR= 10 dB case. This means that the NN has succeeded in performing
a data fusion of the extracted information for the sake of classification.
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Fig. 14 Damage detection, case 1. Training and validation of the two branches convolutional architecture:
evolution of the loss Jd (Y ,p) on D

d
train and D

d
val (left column), and of Gd accuracy Ad (right column) on D

d
train

and on D
d
val , both for the SNR= 15 dB case (top row) and for the SNR= 10 dB case (bottom row)

Table 4 Damage localization, case 1

SNR (dB) {F∗} Al
15 {ush

i }8i=1 0.768

15 {uax
i }8i=1 0.769

15 {ush
i }8i=1 and {uax

i }8i=1 0.812

10 {ush
i }8i=1 0.654

10 {uax
i }8i=1 0.642

10 {ush
i }8i=1 and {uax

i }8i=1 0.707

AccuracyAl of the classifier Gl evaluated onD
l
test

The values of Ad and Al are quite close, despite the greater complexity of the damage
localization problem; this might be due to the intrinsic capability of the FCN to detect
correlations between different sensor recordings, allowing us to perform a correct damage
localization.
Figure 15 reports the evolution of the training and validation loss functions onD

l
val and

D
l
test for the datasets with SNR= 15 dB and SNR= 10 dB, in the case where a two branches

convolutional architecturehas been employed.ComparedwithFig. 14, a smaller difference
in terms of loss and accuracy can be highlighted. This is due to the greater complexity of
the damage localization task, that requires to exploit the computational resources of the
NN entirely. Indeed, the same number of filtersN1,N2 andN3 has been used for both the
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Fig. 15 Damage localization, case 1. Training and validation of the two branches convolutional architecture:
evolution of the loss Jl (Y ,p) onDl

train and onDl
val (left column), and of Gl accuracy Al (right column) onDl

train

and on D
l
val , both for the SNR= 15 dB case (top row) and for the SNR= 10 dB case (bottom row)

Fig. 16 Damage localization, case 1. Confusion matrices, case 1, 15 dB (left picture) and 10 dB (right picture)
SNR datasets

classification tasks, in spite of their different complexity. On the other hand, we expect
that Ad on D

d
test , reported in Table 3, would not be affected by reducing the number of

filters. This conclusion can be reached by looking at Fig. 14 and observing that, during the
last stages of the training,Ad onDd

train is shown to be always greater than the one obtained
on D

d
val .
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Table 5 Damage detection, case 2

f min - f max (Hz) {F∗} Ad

15 − 17 {ush
i }8i=1 0.998

15 − 17 {uax
i }8i=1 0.997

15 − 17 {ush
i }8i=1 and {uax

i }8i=1 0.999

5 − 7 {ush
i }8i=1 0.996

5 − 7 {uax
i }8i=1 0.892

5 − 7 {ush
i }8i=1 and {uax

i }8i=1 0.998

AccuracyAd of the classifier Gd evaluated onD
d
test

Table 6 Damage localization, case 2

f min - f max (Hz) {F∗} Al

15 − 17 {ush
i }8i=1 0.972

15 − 17 {uax
i }8i=1 0.972

15 − 17 {ush
i }8i=1 and {uax

i }8i=1 0.986

5 − 7 {ush
i }8i=1 0.993

5 − 7 {uax
i }8i=1 0.892

5 − 7 {ush
i }8i=1 and {uax

i }8i=1 0.972

AccuracyAl of the classifier Gl evaluated onD
l
test

In Fig. 16, the confusionmatrices related to the two datasets (SNR= 15 dB and SNR= 10
dB) are reported. Most of the errors concern the classification of the damage scenarios
in which the inter-story stiffness of the highest floors has been reduced, as shown by
the entries of the 7-th and 8-th rows and columns of the matrices. This outcome is not
surprising if we consider that these damage scenarios only induce small variations in the
shear vibration frequencies.Moreover, by looking at Figs. 9 and 10, we can remark that the
time evolution of the structural motions under these damage scenarios cannot be easily
distinguished from the undamaged case.

Damage detection and localization in case 2

We now consider the outcomes of the trained classifiers in the case where a random
disturbance is applied to the structural system. Regarding the damage detection task, with
this type of excitation the NN is able to distinguish between undamaged and damaged
instances almost perfectly (see Table 5). Indeed, Ad = 0.999 and Ad = 0.998 have been
reached by the two convolutional branches architecture when fmin = 15 and fmax = 17
Hz, or fmin = 5 and fmax = 7 Hz, have been selected as frequency ranges for the applied
lateral and vertical forces.
We next consider the NN outcomes for the damage localization task. With this type

of excitation, the NN is able to accomplish an extremely accurate classification of the
damaged scenarios, reaching Al = 0.986 and Al = 0.993 when fmin = 15 and fmax = 17
Hz or fmin = 5 and fmax = 7 Hz have been used, respectively. In the former case, the best
classification performances have been obtained by the two convolutional branches archi-
tecture, as shown in Table 6. For the latter case, the NN employing as inputF∗ = {ushi }8i=1
provides the best classification result. The better performances of the NN employing
F∗ = {ushi }8i=1 rather thanF∗ = {uaxi }8i=1 is likely due to the fact in this latter case no axial
frequencies have been excited by the applied load, as remarked in Case 2 (white noise load
case). However, this fact also shows that the data fusion operated by the two convolutional
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Table 7 Damage localization, case 2

N 0 {F∗} Al
1 i = 8 0.226

2 i = (4, 8) 0.722

3 i = (2, 4, 8) 0.774

4 i = (2, 4, 6, 8) 0.906

5 i = (2, 4, 6, 7, 8) 0.865

6 i = (2, 4, 5, 6, 7, 8) 0.937

7 i = (2, 3, 4, 5, 6, 7, 8) 0.899

8 i = (1, 2, 3, 4, 5, 6, 7, 8) 0.993

AccuracyAl of the classifier Gl evaluated onD
l
test . Different numbersN0 of input channelsF∗ , related to ushi , are employed.

Here, fmin = 5 and fmin = 7 Hz

branches architecture has been only partially able to select the most important informa-
tion required for the damage localization task. Nevertheless, very good results have been
reached by also employing F∗ = {uaxi }8i=1 (see Table 6).
We highlight the effect of each incoming signal on the classification outcomes (see

Table 7), since the accuracy Al onD
l
test changes for different numbers of input signalsN0.

The results refer to the case in which only some of the displacements ushi , i = 1, . . . , 8 have
been considered, and fmin = 5 and fmax = 7 Hz. The corresponding confusion matrices
are sketched in Fig. 17, showing that the classification error related to a damage scenario
g is reduced when the corresponding ushg , that is the signal acquired on the floor whose
inter-story stiffness has been reduced, is used as input for the NN.

Conclusions
In this paper, we have investigated a new strategy for real-time structural health monitor-
ing, treating damage detection and localization as classification tasks [3], and framing the
proposed procedure in the family of SBC approaches [4]. We have proposed to employ
fully convolutional networks to analyse time series coming from a set of sensors. Fully
convolutional networks architectures differing for the number of convolutional branches
have been exploited to deal with datasets including time signals of different length and
sampling rate. Convolutional layers have been shown to enable the automatic extraction
of features to be used for the classification task at hand. The neural network architecture
has been trained in a supervisedmanner on data generated through the numerical solution
of a physics-based model of the monitored structure under different damage scenarios.
In the considered numerical benchmarks, we have obtained extremely good perfor-

mances concerning both damage detection and damage localization, even in the presence
of noise, when the applied loads can be characterized either (i) in terms of a few (a priori,
random) frequencies, or (ii) by a higher number of frequencies, within a given range. Espe-
cially in the second case, the outcomes of the NN classifier have shown the potentialities
of the proposed procedure in view of the application to real-life cases.
In future works, we aim to employ the proposed architecture to deal with data coming

from real monitoring systems, tackling the main limit of the proposed procedure con-
cerning the mimicking of the real structural response. This is a well-known problem in
the machine learning community [40]. By coupling recurrent layers branches to the pro-
posed convolutional ones, we expect to further increase the NN performances. As further
steps, we will try to exploit model order reduction techniques for the dataset construc-
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Fig. 17 Gl confusion matrices for different number N0 of input channelsF i∗ . Case 2, fmin = 5 and fmax = 7
Hz
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tion, extending the proposedmethodology tomore complex structural configurations and
damage scenarios, and to design the set of sensors according to a Bayesian optimization
technique [20,41,42].
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