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Introduction
The formation of cracks in quasi-brittle materials such as concrete produces a degrada-
tion in mechanical performance in terms of both stiffness and strength. In addition to 
this, the presence of cracks leads to significant durability problems, such as reinforce-
ment corrosion and calcium leaching [1]. Self-healing systems are designed to mitigate 
these issues by introducing crack ‘healing’ mechanisms into the material that result in a 
recovery of both mechanical performance and durability properties.

There is now a significant body of work on the numerical simulation of self-healing 
systems [2–19], as highlighted in a recent review article [20]. The numerical treatment 
of damage-healing behaviour in mechanical self-healing models has varied, with many 
utilising a continuum damage-healing mechanics framework (e.g. [5, 7]). Alternative 
approaches have included a model based on micromechanical theories [11], the dis-
crete element method (DEM) [13], the extended finite element method (XFEM) [12] 
and embedded discontinuity elements (EFEM) [17]. In addition to this, the treatment 
of the healing itself has varied, ranging from treating the healing as a thermodynamic 
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potential, with an associated healing surface [5], to modelling the healing as a chemical 
reaction such as curing of the healing agent [7] or further hydration in the autogenous 
healing of cementitious materials [6].

The treatment of cracks in the above methods may be categorised as, (i) discrete crack 
methods that simulate the separation between elements directly, (ii) strong-discontinu-
ity approaches that maintain the background mesh but add enhanced fields to represent 
cracks and, (iii) smeared crack approaches that ‘smear’ the crack displacement jumps 
over elements [21–24]. Smeared approaches are convenient to implement and can rep-
resent bands of diffuse cracks that are found in materials such as concrete prior to the 
formation of dominant cracks but cannot directly simulate localised failure and can suf-
fer from stress-locking. Discrete approaches provide accurate descriptions of cracks but 
are not computationally convenient, particularly when multiple cracks occur, as in rein-
forced concrete members. Strong-discontinuity methods provide a good compromise 
between the two approaches because they are -in general- computationally convenient 
yet still provide an explicit representation of cracks; including the location, geometry 
and crack opening [22–28]. This is particularly important for modelling self-healing sys-
tems, as this information is required for the simulation of the transport of healing agents 
in discrete cracks.

Belytschko and Black [25] (see also Moës et al. [26]) developed the strong-discontinu-
ity-based extended finite element method (XFEM), in which cracks are allowed to cross 
the mesh arbitrarily and the discontinuities in the displacement field are captured using 
enrichment functions and additional nodal degrees of freedom. The method makes use 
of a local partition of unity [25, 29, 30] and enrichment functions that are usually cho-
sen a priori based on the physics of the problem. In the case of cracks, a step function 
has been employed for elements completely crossed by a crack [26], whilst additional 
enrichments have been included at the crack tip [31]. Since this early work on XFEM, 
the method has been employed for a range of problems involving both strong and weak 
discontinuities [32, 33]. The generalized finite element method (GFEM), introduced 
by Strouboulis et al. [34–36] and Duarte et al. [27], at a similar time, is also a partition 
of unity method [29, 37–39] that introduces additional functions (or enrichments) to 
improve the accuracy of the solution. The enrichment of the finite element space allows 
discontinuities to be captured internal to the element. In the early work on GFEM, the 
enrichments of the approximation space were global rather than local [40], although 
GFEM models incorporating local enrichments appeared soon after [27]. More recently, 
the names GFEM and XFEM have been used interchangeably [40].

Hansbo and Hansbo [41, 42] proposed an unfitted finite element method, known as 
CutFEM [43] or the phantom node method [28], for capturing discontinuities internal 
to the element. The method consists of replacing every element, K  , which is crossed by 
a discontinuity that divides the element into two parts, Ω1 and Ω2 , with two overlap-
ping elements, K1 and K2 . The new elements are each assigned to a part of the divided 
element and introduce additional nodes (termed phantom or ghost nodes [28, 44]), 
allowing the use of the standard basis functions. This leads to a continuous solution in 
each overlapping element, u1 and u2 , whilst the supposition of these elements allows 
for a discontinuous solution in the domain of interest (defined for the element K  as 
u = u1∀x ∈ Ω1 ∧ u = u2∀x ∈ Ω2 ). For an overview of the method, the interested reader 
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is referred to Burman et al. [43]. Like XFEM, models utilising CutFEM have been devel-
oped for a variety of problems (see for example [45–48]).

An alternative approach to the nodal based enrichment of XFEM, GFEM and Cut-
FEM is to use an element-based enrichment, EFEM. In EFEM, the additional degrees 
of freedom can be eliminated at the element level using static condensation [49], which 
leads to a global system of equations comprising only the original degrees of freedom. A 
comparative study on the two approaches was presented by Oliver et al. [50], who found 
that EFEM was computationally more efficient than XFEM. Ortiz et al. [51] presented 
the first work incorporating a weak discontinuity to capture shear bands, whilst Dvorkin 
et al. [52] presented the first model incorporating a strong discontinuity to capture strain 
localisation. There are now a range of EFEM models that can be found in the literature 
[17, 49, 51–67], with significant developments having been made. A full review of the 
first decade of research on EFEM is provided in Jirasek [68].

A formulation that allowed for non-constant displacement jumps in each element 
and a global or local approach, depending on whether or not static condensation was 
employed, was presented in Alfaiate et al. [49]. The former ensures continuity of the dis-
placement jumps, at the cost of increasing the size of the global system of equations, 
whilst the latter requires the jumps to be averaged at coincident crack nodes. In Dias-da-
Costa et al. [58–60] the generalised strong discontinuity approach GSDA was presented. 
The model employed a global approach and allowed for both non-constant displacement 
jumps and stretching. Linder and Armero [61, 62] developed a new embedded disconti-
nuity element that allowed for branching cracks in a T-shape pattern. The new element 
was employed in the simulation of a dynamic fracture benchmark problem and showed 
good agreement with experimental and numerical results. Dynamic effects were also 
considered in the work of Saksala et al. [64, 65], who developed a 3D model combining 
continuum visco-damage for the pre-peak response with the embedded discontinuity 
model for the post-peak response. The model is rate-dependent and employs an explicit 
time integration to boost computational efficiency. Lu et al. [67] presented a model com-
bining a multi-scale finite element method (MsFEM) [69] with the EFEM for discontinu-
ities in saturated porous media (see also Lu et al. [66] for modelling cracks in solids). The 
model combines the ability of EFEM to capture localisations with the computational effi-
ciency of MsFEM. Numerical examples were presented which showed that the proposed 
method gave accurate predictions when compared with EFEM, with a greater computa-
tional efficiency. A model for self-healing quasi-brittle materials was presented by Zhang 
and Zhuang [17]. The authors utilised an EFEM approach that allowed for crack open-
ing and crack sliding. The model used a reduced integration for cracked elements and 
smeared the displacement jump across the crack band. The healing was introduced at 
the constitutive level into the traction–separation law, with an Arrhenius-type law being 
employed for the solidification of the healing agent.

In this study, the EFEM approach is employed and a specialised element is presented 
that takes healing into account at the element level. The element-based strong-discon-
tinuity approach for simulating both cracking and healing is preferred to the smeared 
approach of Zhang and Zhuang [17] because the former provides a more accurate 
description of the crack geometry and crack displacements, which is particularly impor-
tant in the present work, in which the mechanical model is coupled to a transport model 
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for the flow of healing agents through the discrete cracks [19]. The approach adopted 
for this work ensures that the healing is consistent with the internal degrees of freedom 
introduced to represent the crack and allows for a variational derivation. A cohesive 
zone approach with a damage-healing constitutive model is employed, whilst equilib-
rium over the crack plane is satisfied in a weak sense using a local variation in the inter-
nal degrees of freedom. The element allows for different healing mechanisms and for 
overlapping cycles of damage and healing when combined with a suitable crack plane 
model, such as that employed in the present work [70].

The principal contributions of this work are, (i) a new element with healing degrees of 
freedom linked to a unique damage-healing constitutive model, (ii) the implementation 
of the element within a new coupled transport-mechanical computational framework, 
and (iii) validations using new experimental data and idealisations.

The layout of the remainder of this paper is as follows:

• "Theoretical basis for the element" section describes the theoretical formulation of 
the element including the introduction of healing:

• "Healing agent transport and curing model" section describes the healing agent 
transport and curing model employed in this study:

• "Crack‑plane constitutive model" section describes the crack‑plane constitutive 
model employed in this study:

• "Example problems" section presents a convergence test and two example prob‑
lems concerning a self‑healing concrete with a vascular healing system filled with 
cyanoacrylate, the first being based on a direct tension test and the second an 
L‑shaped specimen:

• "Conclusions" section gives some conclusions.

Theoretical basis for the element
A quadrilateral finite element with an embedded strong discontinuity

The aim of this section is to present the formulation of a quadrilateral finite element 
(Q4) capable of describing embedded crack phenomena governed by any thermodynam-
ically valid inelastic constitutive relationship. The starting point will be the general Q4 
bilinear quadrilateral element to which is added a straight discontinuity, which crosses 
the element at an angle ψ , as illustrated in Fig. 1.

The problem domain is defined as Ω ∈ R
2 with boundary Γ  . The total virtual work 

( δΠ ) for this domain may be written as follows, noting that δ denotes a virtual quantity:

where x is the Cartesian basis, u denotes the displacement vector; t ∈ [t0,T ] is the time., 
ΓD and ΓN are the complementary subsets of the boundary where the prescribed dis-
placements uD(x, t) and tractions gD(x, t) are applied, ε(u) is the strain tensor, σ(ε) is the 
stress tensor, FB(x, t) and F∂Ω(x, t) describe the external body and surface forces respec-
tively, and �n is a unit vector on the boundary.

(1)
δΠ =

∫
Ω

δε : σ dΩ −
∫
Ω

δu · FB dΩ −
∫
∂Ω

δu · F∂Ω dΩ = 0, in Ω ,

u = uD on ΓD,

�n · σ = gD on ΓN .
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If the domain Ω is divided into standard Q4 elements, it is assumed that within 
each elemental subdomain ( Ωe ) any displacement can be linearly interpolated from 
the values at the nodes (vector ū ) through the shape functions (i.e. u(x) = N(x)ue ). 
In this paper, direct tensor notation is used for Eq. (1) and the continuum constitutive 
equations but matrix notation is employed when the discretised form of equations 
and crack-plane constitutive relationships are considered.

A method for introducing a discontinuity into the element is now described.
Let ϑ(x; xC ,ψ) be the signed-distance equation describing the linear discontinuity 

(see Fig. 1), where xC stands for the central point of the crack within the element. Two 
subdomains Ω+

k  and Ω−
k  can be defined as x ∈ Ω+

e ∀ϑ(x) ≥ 0 and x ∈ Ω−
e ∀ϑ(x) < 0 . 

Then, using the Heaviside function Hϑ placed at this discontinuity, the elemental dis-
placements can be expressed as the sum of two functions ue and [[u]] , the later repre-
senting the jump. In other words:

In the present formulation, the continuum material is assumed to be elastic.
The inelastic displacement associated with the discontinuity is extracted from a 

narrow band of material of finite width (See Fig. 2). This narrow band material con-
taining the crack will be termed ‘the crack-plane’, which is defined in the orthonor-
mal (local) basis {�r, �s} , with �r being normal to the crack-plane. The local crack-plane 
relative-displacement vector ( ̃u ) is the sum of an inelastic part ( ⌣u ), which contains 
the crack opening and sliding displacements, and an elastic part ( ̃ue ). The total crack-
plane relative displacements, including those of the elastic band of material either 
side of the discontinuity, are illustrated in Fig. 2.

(2)u(x, t) = ue(x, t)+Hϑ [[u]](x, t)

( ̃

( ̃
0

Fig. 1 Inelastic relative displacement of Ωk
+ with respect to Ωk

− in the strong discontinuity element

0

(

( ̃

Fig. 2 Crack‑plane relative‑displacements including elastic‑band of material
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The stress in the continuum part of the element ( Ω+
k ∪Ω−

k  ) is required, and is given 
by:

where D is the elasticity tensor and εϑ(
⌣
w, xj) is the strain in the continuum part of the 

element caused by the displacement jump at the discontinuity, noting that ⌣w is defined 
below.

The second term requires the tractions and displacements across the discontinuity. In 
the present approach, the latter are derived from the following crack-plane vector, which 
contains crack opening and sliding displacement components, as well as the rotation at 
the mid-point of the crack within an element (i.e. at x = xC);

The opening and sliding displacement components at a position Z̃ along the crack (see 
Fig. 1) are obtained from ⌣w as follows;

in which Λ̃
(
Z̃
)
=

[
1 0 Z̃
0 1 0

]
 and, in the present 2D case, ⌣u

T

=
[

⌣
ur

⌣
us

]
.

Where, the variable Z̃ ∈ 0.5 · [−l̃ϑ , l̃ϑ ] spans the crack length l̃ϑ in the same direction 
as �s ; and thk is the out-of-plane thickness of the crack band.

The work conjugate vector to ⌣w , which contains force and moment terms, is obtained 
by integrating the tractions along the length of the discontinuity, as follows:

The tractions applied to the crack plane of material are equal to those applied across 
the discontinuity, thus σ̃ = ⌣

σ and F̃ =
⌣

F.
In order to derive εϑ , an expression is needed for the displacement in the positive 

part of the elements (i.e. x ∈ Ω+ ) due solely to the relative-displacement across the dis-
continuity (i.e. uϑ(x) ). This is given by the following expression, which is based on the 
assumption that the rotation ( ̃α ) is small (See Fig. 1):

in which

The operator Tw(x;ψ , α̃, xC ,Hϑ) maps the rigid body motion induced by the dis-
continuity to the parent element nodes and the introduction of Hϑ ensures that vector 
uϑ(x) is only non-zero in the positive part of the element. By considering only the rigid 
body motions, it is implicitly assumed the enhanced strain in the continuum is null. 

(3)σ = D : (ε− εϑ)

(4)⌣
w = [⌣ur,C ,⌣us,C , ⌣α]T

(5)⌣
u = Λ̃

⌣
w

(6)F̃ = thk




� lCK /2
−lCK /2

σ̃rdZ̃� lCK /2
−lCK /2

σ̃sdZ̃� lCK /2
−lCK /2

σ̃r Z̃dZ̃




(7)

uϑ(x) =
[
− sin(ψ) − cos(ψ) Rx(x; α̃, xC ,Hϑ)

cos(ψ) − sin(ψ) Ry(x; α̃, xC ,Hϑ)

]
· ⌣
w = Tw(x;ψ , α̃, xC ,Hϑ) · ⌣

w

(8)R(xj; α̃, xC ,Hϑ) = Hϑ(x) ·
−→
t × (xj − xC)
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This means that integrations over multiple element zones are avoided [59], which makes 
implementation more straightforward. However, this comes at the expense of restrict-
ing the shear jumps to being constant along the discontinuity in each element [59]. In 
some shear dominated problems, this restriction may mean that a finer mesh would be 
required to achieve the same level of accuracy compared to a solution using elements 
with a tangential relative stretching mode [63], but this issue is not believed to be signifi-
cant for the problems considered in this paper.
εϑ is then obtained by applying Eq.  (7) to the element nodal displacements uϑ(xj)(j 

denoting the element local node number) and by employing the standard strain–dis-
placement matrix B(x) derived from the element shape functions N (x) . This gives the 
following equation;

in which M(x) = B(x)Tw

(
xj
)
.

The discontinuity is assumed to follow the basic elastic-damage cohesive crack con-
stitutive relationship given in Jefferson et  al. [71]. This is based on damage mechan-
ics and gives the following relationship between the crack-plane tractions and relative 
displacements;

in which σ̃ =
[
σ̃r σ̃s

]T;ũ =
[
ũr ũs

]T ; k̃ =
(
1− ω̃(ζ̃ )

)
k̃e ; k̃e =

[
k̃r 0

0 k̃s

]
 ; k̃r and k̃s the 

normal and shear elastic moduli respectively for the crack-plane; ω̃ ∈ [0, 1] is the crack-
plane damage variable, which depends on the damage evolution parameter ( ̃ζ ), accord-
ing to the functions given in Sect. 4. It is also noted that subscript e denotes an element 
quantity and superscript e refers to an elastic entity.

Using Eq. (9) in Eq. (6) leads to the following relationship between the crack-plane dis-
placement and force vectors:

in which ξ̃ ∈ [−1, 1] is the 

parametric coordinate along the discontinuity and J̃ = dZ̃/dξ̃ the resultant Jacobian.
The relationship between the crack-plane and inelastic displacement vectors is given 

by;

in which I3 is the rank 3 identity matrix.

(9)εϑ = M
⌣
w

(10)σ̃ = (1− ω̃)k̃e ũ = k̃ ũ

(11)F̃ = K̃w̃

(12)⌣
w = w̃ − K̃e−1

F̃ = w̃ − K̃e−1

K̃w̃ == (I3 − K̃e−1

K̃)w̃ = ⌣

Iw̃
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Making use of Eqs. (1), (3) and (11), the total virtual work may be written as the sum 
of the virtual work of the continuum part of the element and that of the discontinuity, as 
follows:

where Fe =
∫
Ωe

δuTe FBel dΩ +
∫

∂Ωe

δuTe F∂Ωe dΩe.

Using (9) in (13) results in the following revised virtual work equation;

Since the constitutive relationships (10) and (11) are written in terms of the total 
crack-plane displacement vector, it proves convenient to express (14) in terms of w̃ 
rather then ⌣w . This is accomplished by using Eqs. (9) and (12), as follows;

in which M̃(x) = B(x)Tw

(
xj
)⌣

I .

Using Eq. (15) and employing Eq. (11) gives;

where K̄ = ⌣

I
T

K̃.

Equilibrium between the tractions across the discontinuity and the stresses in the 
adjacent continuum is considered in a weak sense by assuming that the element nodal 
displacements are fixed and that there is a virtual change in w̃ , which leads to;

from which the following relationship between the crack-plane displacement vector and 
element nodal displacements can be derived;

in which C =
[
∫
Ωe

M̃TDM̃ dΩe + K̄

]−1 ∫
Ωe

M̃TDB dΩe

Using Eq. (18) in (16) gives;

The element stiffness relationship may then be obtained by cancelling the common 
virtual displacements and rearranging Eq. (19), as follows:

(13)δΠe =
∫

Ωel

(δε− δεϑ)
TD(ε− εϑ) dΩe + δ

⌣
w

T

F̃− δuTe Fe = 0

(14)δΠe =
∫

Ωel

(
δuTe B

T − δ
⌣
w

T

MT

)
D
(
Bue −M

⌣
w
)
dΩe + δ

⌣
w

T

F̃− δuTe Fe = 0

(15)εϑ = M̃ w̃

(16)δΠe =
∫

Ωel

(
δuTe B

T − δw̃TM̃T
)
D
(
Bue − M̃w̃

)
dΩe + δw̃TK̄w̃ − δuTe Fe = 0

(17)δΠew =
∫

Ωe

(
−δw̃TM̃T

)
D
(
Bue − M̃w̃

)
dΩe + δw̃TK̄w̃ = 0

(18)w̃ = Cue

(19)

δΠe = δuTe

∫

Ωel

(
BT − CTM̃T

)
D
(
B− M̃C

)
dΩeue + δuTe C

TK̄Cue − δuTe Fe = 0.
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where KSDe =
∫
Ωel

(
BT − CTM̃T

)
D
(
B− M̃C

)
dΩe + CTK̄C.

In this approach, equilibrium across the discontinuity and the crack-plane displace-
ments are defined at the element level (see Eq.  (18)). Whilst this means that there is 
no continuity of the crack-plane displacements across element boundaries (though 
the mean values at coincident nodes could be adopted in the constitutive law [49]), it 
ensures that the bandwidth of the global stiffness matrix remains constant [58]. We also 
note that the crack path used in the discrete flow computations is smoothed by averag-
ing the crack openings from adjacent elements at common boundaries.

Extension to damage‑healing

To account for healing, the local constitutive relationship (10) is modified by adding a term 
to account for the damaged material that has been restored. The proportion of material that 
is healed at time t is given by h̃(t) ∈ [0, ω̃] and the healing displacement ( ̃uh ) is introduced 
to ensure that an increment of healing takes place under constant stress, which ensures that 
a healing step doesn’t violate the second law of thermodynamics (See Jefferson et al. [20]). 
Various forms of healing model are described in Jefferson et al. [20] and a specific model 
(see "Healing agent transport and curing model" and  "Crack-plane constitutive model" sec-
tions for an overview) is presented in Freeman and Jefferson [19] and Jefferson et al. [70]. 
The aim here is to show how a general form of local healing model may be incorporated 
into the element with an embedded strong discontinuity.

The elastic-damage-healing counterpart to Eq.  (11) may be obtained from Eq.  (19), as 
follows:

in which

The inelastic component of displacement is now given by:

and the strain change due to the relative displacements across the discontinuity is;

(20)Fe = KSDeue

(21)σ̃ = (1− ω̃)k̃eũ + h̃ k̃he(ũ − ũh)

(22)F̃ = K̃ w̃ + K̃ h(w̃ − w̃h)

(23)
⌣
w =

(
I3 − K̃e−1

(
K̃ + K̃h

))
w̃ + K̃e−1

K̃hw̃h

(24)εϑ = Mww̃ +Mww̃h
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in which Mw = M
(
I3 − K̃e−1

(
K̃ + K̃h

))
 and Mh = K̃e−1

K̃h.

Since an increment of healing takes place under a zero change in stress, it may be assumed 
that;δ⌣

w =
(
I3 − K̃e−1

(
K̃ + K̃ h

))
δw̃ and δεϑ = Mwδw̃

The virtual work equation for the damage-healing is obtained by using Eqs.  (22–24) in 
Eq. (14), as follows;

in which K̃ww =
(
I3 − K̃e−1

(
K̃ + K̃h

))T(
K̃ + K̃h

)
and K̃wh =

(
I3 − K̃e−1

(
K̃ + K̃h

))T
K̃h

The equivalence of Eq. (17), which is used to satisfy equilibrium between the crack and 
the continuum for the damage-healing case, is

From which the following relationship may be derived;

in which Cu =
[
∫
Ωel

M
T
wDMw dΩe + K̃ww

]−1 ∫
Ωel

M
T
wDB dΩe and Ch =

∫
Ωel

−M
T
wDMh dΩe + K̃wh.

Using Eq. (27) in Eq. (25) gives;

from which the following element stiffness relationship may be derived;

in which

and where w̃h is defined at the element level.
In the following sections the specific healing agent transport, curing and crack-

plane constitutive models that are employed in this study are described. The authors 

(25)

δΠe =
∫

Ωel

(
δuTe B

T − δw̃T
M

T
w

)
D(Bue −Mww̃ −Mhw̃h) dΩe

+ δw̃T
(
K̃www̃ − K̃whw̃h

)
− δuTe Fe = 0

(26)

δΠe =
∫

Ωel

(
−δw̃TMT

w

)
D(Bue −Mww̃ −Mhw̃h) dΩe + δw̃T

(
K̃www̃ − K̃whw̃h

)
= 0

(27)w̃ = Cuue + Chw̃h

(28)

δΠe =
∫

Ωel

(
δuTe B

T − δuTe C
T
uM

T
w

)
D(Bue −Mw(Cuue + Chw̃h)−Mhw̃h) dΩe

+δuTe C
T
u

(
K̃ww(Cuue + Chw̃h)− K̃whw̃h

)
− δuTe Fe = 0

(29)KSDehue = Fe + Kehw̃h

KSDeh =
∫

Ωel

(
BT − CT

uM
T
w

)
D(B−MwCu) dΩe + CT

u K̃wwCu

and Keh=
∫

Ωel

(
BT − CT

uM
T
w

)
D(MwCh +Mh)dΩe −

(
CT
u K̃wwCh − K̃wh

)
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emphasise that the element is general and could be readily combined with other forms of 
healing model.

Healing agent transport and curing model
The transport of the healing agent through the crack was calculated using the modified 
Lucas-Washburn equation of Gardner et al. [72–74] (see also Selvarajoo et al. [75]), that 
reads:

where z denotes the cumulative flow length in the crack, the superior dot denotes a time 
derivative, Pc is the capillary pressure, Papp is the applied pressure, ρ is the density, g is 
the acceleration due to gravity, φ is the inclination of the crack, βs and βm are factors to 
allow for stick–slip of the meniscus and frictional dissipation at the meniscus respec-
tively and η is the viscous resistance given by:

where βw is a factor to allow for wall slip, k = w̃2
r,C

/
12 is the permeability and µ is the 

dynamic viscosity of the healing agent.
The capillary pressure is given by the Young–Laplace equation:

where γ denotes the surface tension and θd is the dynamic contact angle.
The dynamic contact angle is a function of the meniscus velocity and is described using 

the relationship of Jiang et al. [76]:

where c1 and c2 are constants, and θs denotes the static contact angle.
Cyanoacrylate cures through a polymerisation reaction in the presence moisture [75, 77]. 

The moisture required for the reaction is transported into the glue from the substrate or 
the surrounding air. This leads to a reaction front which propagates into the glue, which, 
experimental evidence shows is diffuse in nature [75, 78]. This can be described by [19]:

where x denotes the position measured from the crack face, t is time, zc is a wall factor, 
zc1 is a diffusion coefficient and z(t) denotes the position of the reaction front.

The propagation of the reaction front is given by [19, 75]:

(30)ż = Pc(1− βs)+ Papp − ρgz sin (φ)
2βm
w̃r,C

+ η

(31)η = w̃r,C(z)

z∫

0

1

w̃r,C(x)
(
w̃r,C (x)βw

2
+ k(x)

µ

)dx

(32)Pc =
2γ cos (θd)

w̃r,C

(33)tanh

(
c1

(
żµ

γ

)c2
)

= cos (θs)− cos (θd)

cos (θs)+ 1

(34)ϕh(x, t) =
1

2


1− tanh



�

2√
π

�
x − z(t)− zc

zc +
�

z(t)
zc1
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where zc0 is the critical reaction front depth and τ is the characteristic time.
The degree of mechanical healing found in Eq.  (21) in the absence of re-damage- is 

given as the degree of cure at the centre of the crack:

Crack‑plane constitutive model
In the present work, different constitutive models –that are coupled through the equilib-
rium of stresses and the crack initiation criterion [58] are employed for the continuum and 
the discrete cracks. The continuum is assumed to be linear elastic, whilst the discontinu-
ity is assumed to follow the elastic-damage-healing cohesive crack constitutive relationship 
given in Eq. (21).

Damage‑only model

The damage variable ( ̃ω ) is a function of the damage evolution parameter ( ̃ζ ), as follows:

where ut = ft
/
K  where ft is the tensile strength of the material, K = E/hcp is the crack-

plane stiffness, E is Young’s modulus of the continuum material (also the crack-plane 
band of elastic material), hcp is the assumed thickness of the crack-plane (taken as 10 mm 
u.n.o.), um is the relative-displacement at the effective end of the softening curve (taken 
as 0.2 mm u.n.o.) and c1 = 5 is a softening constant.

The evolution of ζ̃ is governed by the following damage function:

in which ζeq(ũ) = ũ1
2

[
1+

(
µ
γ

)2]
+ 1

2γ 2

√(
γ 2 − µ2

)2
ũ21 + 4γ 2

(
ũ22 + ũ23

)
 with the 

standard loading/unloading conditions Ż ≥ 0;φd ≤ 0; Ż · φd = 0; Żφ̇d = 0 ∀φd = 0.

Damage‑healing model

The damage component of the model is unchanged from that described by Eqs. (37) and 
(38). Healing depends on the flow and curing of the healing agent, as explained in the previ-
ous section.

To allow for re-damage and re-healing, the evolution of the healing variable, found in the 
elastic-damage-healing cohesive crack constitutive relationship given in Eq.  (21), is to be 
based on the following;

in which the relative area (a) of the crack exposed to healing agent is given by;

(35)z(t) = zc0

(
1− e

−t
τ

)

(36)h̃ = ϕh(
w̃r,C

2
, t) = 1

2


1− tanh



�

2√
π

�


w̃r,C

2
− zc0

�
1− e

−t
τ

�
− zc

zc +
�

z(t)
zc1








(37)ω̃ = 1− ut

ζ̃
· e−c1

ζ̃−ut
um−ut

(38)ϕd(ũ, ζ̃ ) = ζeq(ũ)− ζ̃

(39)h̃ = h̃ · e−�t/ τh + a · (1− e−�t/ τh )
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in which Δac is the incremental area of virgin filled crack, ∆aredam is the incremental area 
of re-damaged material and ∆arec is the incremental area of re-filled cracks.

An important aspect of the damage-healing model is that an increment of healing causes 
no change in mechanical energy when it takes place in a static crack. This is equivalent to 
saying that healing agent cures in a stress-free state. Applying this principle to Eq. (21) for a 
healing update (Δh), with ũ remaining constant, leads to the following expression:

from which the update ( �ũh ) may be derived to be:

Example problems
In this section, example problems are presented to demonstrate the performance of the 
model. Crack continuity was ensured using the algorithm of Alfaiate et al. [49, 79] whilst 
U-turns in the crack path were prevented using the approach of Cervera et al. [80]. The 
latter two examples concern self-healing concrete specimens with embedded vascular 
networks. Depending upon the configuration of the channels, such systems can require 
a three-dimensional approach, since the transport of the healing agent may not be uni-
form across the width of the specimen. However, for the present examples, the authors 
believe that two-dimensional idealisations are adequate. This is justified by the fact that 
in the direct tension example, experimental observations showed that the healing agent 
had spread uniformly across the width of the crack [81, 82]. Whilst in the L-shaped 
specimen example, the embedded channels are hypothetical and it is assumed that there 
are sufficient channels for the healing agent flow front to be effectively uniform across 
the specimen. The model parameters employed for the flow model can be seen in the 
Appendix.

Convergence test

This example considers a hypothetical prismatic singly notched specimen that is loaded 
in tension, as illustrated in Fig. 3. In this test it was assumed that the rate of transport 
of the healing agent in the crack was much faster than the rate of loading such that the 
crack was filled instantaneously with healing agent. The finite element meshes used in 
the analysis can be seen in Fig. 4, whilst the model parameters are given in Table 1. The 
number of elements used ranged from 36 for Mesh1 to 1296 for Mesh4, the time step 
employed was 0.5 s. A convergence tolerance of 0.01% for the out of balance force and L2 
iterative displacement norms was employed in this example and an average of 5 Newton 
iterations were required per time step.

(40)a = a+�ac −�aredam +�arec

(41)
(
h̃+�h̃

)
k̃he(ũ − ũh −�ũh)− h̃ k̃he(ũ − ũh) = 0

(42)�ũh = �h̃(
h̃+�h̃

) (ũ − ũh)
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The load response curves from the simulations are given in Fig.  5. It can be seen 
from the figure that there is a significant difference in the load-response when heal-
ing is considered, in addition to there being a greater difference in the responses pre-
dicted for each of the meshes employed. To analyse the mesh convergence, the L2

-error norm of the response curves was employed:

where P and Pr are the vectors of loads found in the response curves for a given solution 
and the reference solution respectively and the integral is taken over the response curve.

In the absence of an analytical solution to the problem, the solutions obtained with 
Mesh4 for the damage only and damage-healing cases were taken as the reference solu-
tions. The results of the convergence study can be seen in Fig. 6, where the error norm is 
plotted against the element size, he. The figure shows that the characteristics of the con-
vergence behaviour of the model are the same for the damage only and damage-healing 
case, but that the error is larger when healing is considered.

Direct tension test

This example considers a set of direct tension tests on doubly notched concrete speci-
mens (illustrated in Fig. 7), which contained embedded healing channels that were filled 
with cyanoacrylate (CA), presented in Selvarajoo [81] and Selvarajoo et al. [82]. The tests 
involved loading the specimen until a macro crack had formed and then opened to a 
given crack mouth opening displacement (CMOD). The CA supply was then released 
whilst the crack was then held at the CMOD value for a selected period of time. At the 
end of this ‘healing period’, the specimen was loaded to until the CMOD clip gauge 
reached 0.3 mm, after which the specimens were unloaded. The test series considered 
two different crack openings and fixed healing periods of 0 s, 60 s and 600 s (and 1200 s 
for the 0.2 mm opening). The test set up can be seen in Fig. 7. The finite element meshes 
used in the analyses can be seen in Fig. 8. The model parameters are given in Table 2, 
where the subscript h indicates that these parameters are for the healed material. The 

(43)
∥∥Pr − P

∥∥
L2∥∥Pr

∥∥
L2

=
√∫

(Pr − P)(Pr − P)ds∫
(Pr)(Pr)ds

P

200mm

200mm

L=40mm

100mm

Thickness 100mm
Fig. 3 Schematic of the convergence test set up
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number of elements was 144 and 506 for Mesh1 and Mesh2 respectively, whilst the time 
step size used was 1 s. A convergence tolerance of 0.01% for the out of balance force and 
L2 iterative displacement norms was employed in this example and an average of 4 New-
ton iterations were required per time step.

It can be noted that in this example, following experimental observations, the degree 
of healing was limited to 0.85. This is due to the fact that in some areas of the crack, the 
healing agent was in constant flux and as such did not stabilise and cure [82].

The comparison of the numerical simulations with the experimental data is given in 
Fig. 9. It can be seen from the figure that the numerical predictions accurately capture 
the experimental behaviour for both the 0.1 mm and 0.2 mm cases. The comparison of 

Fig. 4 Finite element meshes used, namely Mesh1 (left), Mesh2 (centre left), Mesh3 (centre right) and Mesh4 
(right)

Table 1 Model parameters convergence test

Parameter Value Parameter Value

E (N/mm2) 30,000 fth (N/mm2) 3.00

ν (−) 0.2 εemh (mm) 0.4

ft (N/mm2) 3.00 zc0 (mm) 0.16

εem (mm) 0.15 τ (s) 120

hb (mm) 4.0 zc1 (mm/mm2) 25

Eh (N/mm2) 30,000 zc (mm) 1 × 10−5

νh (−) 0.2
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Fig. 5 Load displacement curve damage only (left) and damage‑healing (right)
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the predicted and experimentally observed crack pattern can be seen in Fig. 10. It can 
be seen from the figure that there is a generally good match, although the experimental 
crack path is more tortuous. In this example, cracks propagated from the notches to the 
centre of the specimen, where they coalesced into one crack that crossed the centre of 
the specimen. The crack was fully formed prior to the release of healing agent in both 
cases and, as a result of this, the healing had no effect on the crack pattern. The numeri-
cal response curves for the two meshes are coincident, indicating mesh convergence.

L‑shaped specimen test

This next example concerns the L-shaped specimen presented in Winkler et al. [83]. The 
test considered both plain and reinforced concrete specimens and both the load dis-
placement curves and crack patterns were recorded. In the present study, the plain spec-
imens were considered. To investigate the effect of healing, two hypothetical embedded 
channels filled with CA and placed vertically at a distances of 175 mm and 115 mm from 
the right-hand-side of the specimen were considered. The location of these hypothetical 

0.0001

0.001

0.01

0.1

1

055

L2 -e
rr

or
 

he (mm)

Damage only
Damage-healing

Fig. 6 Convergence in terms of the L2‑error norm of the response curves
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Fig. 7 Schematic of the direct tension test set up the elevation (left) and cross‑section (right)
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channels can be seen in Fig. 11. The finite element meshes used in the analyses can be 
seen in Fig. 12, whilst the model parameters are given in Table 3. The meshes include 
two structured meshes and one unstructured mesh that contains distorted elements. 
The number of elements was 770, 1158 and 1976 for Mesh1, Mesh2 and Mesh3 respec-
tively, whilst the time step size used was 10 s. A convergence tolerance of 0.01% for the 
out of balance force and L2 iterative displacement norms was employed in this example 
and an average of 5 Newton iterations were required per time step.

The comparison of the numerical simulations with the experimental data can be 
seen in Figs.  13 and 14, whilst contour plots of the degree of healing in the crack at 
four points in the test (indicated by markers a-d in Fig. 13) is given in Fig. 15. It may be 
seen from the figures that the numerical predictions for the damage only case are able 
to accurately capture the experimental behaviour in terms of both the load–displace-
ment curve and the predicted crack patterns. It is interesting to note the healing has a 
significant effect on the load–displacement curve, but that the predicted crack pattern 
remains unchanged. A key feature of the post peak response for the healing case is the 
two distinct post healed peak loads, each of which follows the release of CA from one 
of the embedded channels. The contour plots show that the degree of healing is greater 
than 80% throughout the crack at the first healed peak load, and that by the end of the 
test almost all of the healed material has been completely redamaged. The numerical 
response curves for the three meshes are in very close agreement, indicating mesh con-
vergence. In addition to this, the predicted crack patterns are also in good agreement.

Fig. 8 Finite element meshes used, namely Mesh1 (left) and Mesh2 (right)

Table 2 Model parameters direct tension test

Parameter Value Parameter Value

E (N/mm2) 30,000 fth (N/mm2) 3.75

ν (−) 0.2 εemh (mm) 0.4

ft (N/mm2) 3.75 zc0 (mm) 0.16

εem (mm) 0.15 τ (s) 120

hb (mm) 4.0 zc1 (mm/mm2) 25

Eh (N/mm2) 30,000 zc (mm) 1 × 10−5

νh (−) 0.2
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Conclusions
A novel specialised element for simulating self-healing in quasi-brittle materials was 
presented. The following conclusions can be drawn from this work:

• The introduction of the healing variables at the element level ensures consistency 
with the internal degrees of freedom associated with the crack.

• The equilibrium condition over the crack plane can be satisfied in a weak sense using 
the virtual work associated with the internal degrees of freedom.

• The proposed element allows for different healing mechanisms and is readily coupled 
to a transport model that could be used to calculate the amount of available healing 
agent at a damage site.

• The proposed element allows for overlapping cycles of damage and healing when 
combined with a suitable crack‑plane model.
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Fig. 9 Comparison of load‑CMOD curve with experimental data for a fixed healing period of 60 s and crack 
widths of 0.1 mm (left) and 0.2 mm (right)

Fig. 10 Comparison of numerical and experimentally observed crack pattern
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Fig. 11 Schematic of the L beam test set up

Fig. 12 Finite element meshes used, namely Mesh1 (left), Mesh2 (centre) and Mesh3 (right)

Table 3 Model parameters L‑shaped specimen test

Parameter Value Parameter Value

E (N/mm2) 25,850 fth (N/mm2) 6.75

ν (−) 0.18 εemh (mm) 0.4

ft (N/mm2) 2.7 zc0 (mm) 0.26

εem (mm) 0.225 τ (s) 30

hb (mm) 4.0 zc1 (mm/mm2) 25

Eh (N/mm2) 30,000 zc (mm) 1 × 10−5

νh (−) 0.2
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Fig. 13 Comparison of load–displacement curve with experimental data

Fig. 14 Comparison of numerical and experimentally observed crack pattern

Fig. 15 Contour plots of degree of healing at a (top left), b (top right), c (bottom left) and d (bottom right)
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• The new finite element model is able to accurately capture the damage‑healing 
behaviour of a vascular self‑healing cementitious material system in terms of both 
the mechanical response and the observed crack patterns, as demonstrated with the 
validation examples.
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Appendix
Healing agent transport and curing model parameters

The parameters used for the flow model can be seen in Table 4. In the L-shaped speci-
men test the flow is initiated once the crack width at the location of the channel reaches 
a critical value ( wcrit).

Table 4 Flow model parameters

a Direct tension test
b L‑shaped specimen test

Parameter Value Parameter Value

θs (rad) 0.1754 βs (−) 0

γ (N/m) 0.033 c1 (−) 1.325

µ (Ns/m2) 0.004 c2 (−) 0.35

ρ (kg/m3) 1060 wcrit (mm) 0.025

βm (Ns/m2) 0 Papp
a (N/m2) 50,000

βw  (m3/Ns) 0 Papp
b (N/m2) 500,000

http://doi.org/
https://doi.org/10.17035/d.2020.0099148076
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