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Abstract

We present a variational framework for the computational homogenization of
chemo-mechanical processes of soft porous materials. The multiscale variational
framework is based on a minimization principle with deformation map and solvent flux
acting as independent variables. At the microscopic scale we assume the existence of
periodic representative volume elements (RVEs) that are linked to the macroscopic
scale via first-order scale transition. In this context, the macroscopic problem is
considered to be homogeneous in nature and is thus solved at a single macroscopic
material point. The microscopic problem is however assumed to be heterogeneous in
nature and thus calls for spatial discretization of the underlying RVE. Here, we employ
Raviart–Thomas finite elements and thus arrive at a conforming finite-element
formulation of the problem. We present a sequence of numerical examples to
demonstrate the capabilities of the multiscale formulation and to discuss a number of
fundamental effects.
Keywords: Computational homogenization, Chemo-mechanics, Diffusion, Hydrogels,
Porous materials

Introduction
The continuous advancement of technological innovations in the fields of digitalization
and automation leads to increased demands of smart and multifunctional materials. In
that context, the design of associated materials with tailor-made properties is paramount.
Classical examples cover solids with coupled electro- and magneto-mechanical response
such as ferroelectrics or magnetostrictives. More recently, several advanced materials
exhibiting chemo-mechanical coupling have entered the scene and experience increased
attention since then. Related materials show interactions between fluid flow and defor-
mations and play an important role in emerging applications such as lithium-ion batteries
(Wang et al. [40]), heterogeneous concretes (Wang and Ueda [41]), engineered biologi-
cal tissues (Truskey et al. [38]), or fiber-reinforced superabsorbent hydrogels (Chen and
Park [7]).

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-020-00161-6&domain=pdf
http://orcid.org/0000-0002-5838-5201
http://creativecommons.org/licenses/by/4.0/


Polukhov and Keip Adv. Model. and Simul. in Eng. Sci.           (2020) 7:35 Page 2 of 26

In order to allow for the theoretical development of related materials and structures,
reliable continuum-mechanical models are needed. Related formulations have to take
into account the mutual couplings between the fluidic diffusion of some solvent phase
and the mechanical deformation of some solid phase in a single multiphase material. In
fact, the development of continuum-mechanical models and associated numerical imple-
mentations have seen a lot of advancements recently. We refer to the works of Hong
et al. [19,20], Chester and Anand [8], Nilenius et al. [28], Miehe et al. [25], Ehlers and
Wagner [11] and Böger et al. [4] among many others.
In addition to that—when targeting thedesignofmaterials—theneed formultiscale con-

tinuum approaches becomes evident. Associated homogenization techniques involving
continuummicrostructures traceback to the earlyworksofVoigt [39], Reuss [33],Hill [18].
For the realization of multiscale numerical simulations we refer to Miehe et al. [26], Feyel
and Chaboche [12]. A common feature of the above approaches is the identification of a
representative volume element (RVE) that reflects the heterogeneity of a givenmicrostruc-
ture. Here, one often assumes separation of length scales by postulating that typical length
scales of the RVE are much smaller than typical length scales of a corresponding macro-
scopic problem. This then renders the notion of so-called first-order homogenization
schemes.1

Extensions of first-order homogenization towards the incorporation of heat conduction
have been proposed by Özdemir et al. [29], Temizer and Wriggers [37], Temizer [36]
and Chatzigeorgiou et al. [6]. Here, the transient behavior of the material is considered
only at the macroscopic level, while at the microscale the problem is assumed to be
stationary. In contrast to that, Larsson et al. [24] have proposed the variationally consistent
homogenization of heat conduction that takes into account the transient behavior also at
themicroscopic level.2 The latter approach leads to size-dependentmacroscopic response.
As could be shown by the authors, the size dependence vanishes when the size of the RVE
approaches zero. While such effect seems in accordance with the idea of scale separation,
it does not occur in the first-order homogenization of stationary problems. Related effects
and consequences have been discussed by Kaessmair and Steinmann [21] who proposed
a transient homogenization framework for coupled chemo-mechanical problems.
Close to the formulations of Larsson et al. [24] and Kaessmair and Steinmann [21]

we propose a variationally consistent homogenization approach to the coupled chemo-
mechanics of transient diffusion–deformation processes in soft, porous solids. In doing
so, we critically revise the influence of the RVE size on the effective macroscopic response
of a transient microscopic problem. In contrast to the above-mentioned homogeniza-
tion schemes of thermo- and chemo-mechanics, we consider the computational homog-
enization of diffusion—deformation processes within a minimization-based variational
formulation. The latter is adopted from the ideas of Miehe et al. [25] and Böger et al. [4].
In the minimization-based formulation, the deformation map and the solvent-volume

flux act as the independent fields. Associated formulations have several advantages com-
pared with direct formulations (that are based on balance equations) and standard saddle-

1A higher-order approach has been proposed by Kouznetsova et al. [22].
2We refer to Pham et al. [30] for the homogenization of microscopically transient problems in the framework of
dynamic metamaterials.
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point formulations (that usually exploit the chemical potential as independent field next
to the displacement):

1. In contrast to direct approaches, variational structures lead to compact representa-
tions involving symmetric system matrices [4,25].

2. For two-dimensional problems it could be shown that the minimization formula-
tion is computationally more efficient than both direct approaches and saddle-point
formulations [25,35].

3. A minimization formulation is not restricted by the inf-sup condition, which is an
inherent problem of saddle-point formulations [23,35].

4. A minimization formulation is favorable for the investigation of structural instabili-
ties since the coupled stiffness matrix is positive definite unless an instability occurs
[14,31].

5. In the context of homogenization methods, minimization structures can be embed-
ded into Hashin–Shtrikman variational principles and thus allow the computation
of bounds of effective material properties [17,27].

Next to that, we should however note that the above advantages come at the cost
of a more involved spatial discretization of the solvent-volume flux based on H (Div)-
conforming finite elements. For the latter we refer to Miehe et al. [25], Böger et al. [4],
Teichtmeister et al. [35].
The structure of the present contribution is as follows. In the section “Variational

homogenization of diffusion–deformation processes”, we start with the definition of a
rate-type variational principle of homogenization based on the deformation map and the
solvent-volume flux as independent field variables. The rate-type principle is then trans-
lated into an incremental variational principle of homogenization. The latter comes along
with discretization in space and time. For time integration, we employ an implicit Euler
scheme. The spatial discretization is realized by means of conforming Raviart–Thomas-
type finite elements. Based on the discrete setting, we are able to determine all relevant
macroscopic quantities including the algorithmically consistent material moduli. In the
section “Size effects in the homogenization of transient diffusion”, we briefly comment
on the size dependence of the homogenization problem involving the transient diffusion
at microscale. This discussion serves as motivation for the set of numerical examples
to be covered in the section “Representative numerical examples”. There we present a
sequence of numerical studies of the effective response of two-phase porous composites.
A conclusion of the present work will finally be given in the section “Summary”.

Variational homogenization of diffusion–deformation processes
In the present section, we discuss the computational homogenization of diffusion–
deformation processes based on a rate-type variational formulation. We consider a varia-
tionally consistent approach close to the ideas of Larsson et al. [24]. However, in contrast
to the latter work, our goal is to develop a homogenization scheme that is based on a
minimization principle. The spatial discretization of the coupled problem will be realized
within a conforming finite-element formulation based onRaviart–Thomas-type finite ele-
ments. In order not to overload the presentation, we will keep the motivation for the use
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of certain functionals as concise as possible. For more information on related topics the
interested reader is referred to Hong et al. [19,20] and Böger et al. [4].

Constitutive state variables at the microscopic level

In the context of a minimization formulation, a diffusion–deformation process can be
described by two independent fields given by the deformation map ϕ and the solvent-
volume fluxH having the following properties (Gurtin et al. [16], Miehe et al. [25], Böger
et al. [4])

ϕ :

⎧
⎨

⎩

B0 × T → Bt ⊂ R3

(X , t) �→ ϕ(X , t)
and H :

⎧
⎨

⎩

B0 × T → R3

(X , t) �→ H (X , t),
(1)

where X denotes a material point at the microscopic reference configuration B0, which is
mapped to the current configuration Bt by the deformation map ϕ. The solvent-volume
fluxH describes the flow of the solvent volume relative to the solid skeleton. Such inter-
pretation follows Biot’s approach to the modeling of porous media [3]. For a detailed
derivation of the equations used in the present contribution we refer to Coussy et al. [9].
Furthermore, we introduce the concentration of solvent volume describing the amount

of solvent molecules in a referential infinitesimal volume element

s :

⎧
⎨

⎩

B0 × T → R+

(X , t) �→ s(X , t)
(2)

with s = νc. Here, ν denotes the volume of a single solvent molecule and c is the number
of these molecules. The solvent-volume concentration s can be related to the solvent flux
by considering the conservation of solvent-volume concentration (Gurtin et al. [16]). It
states that the change of solvent-volume concentration in a given arbitrary domain of a
body is equal to the flux of solvent volume across the surface of that domain. Locally, this
can be expressed as

ṡ = −DivH . (3)

Considering a first-order approach of homogenization, the independent fields can be
decomposed into microscopic and macroscopic contributions

ϕ(X , t) := ϕ̃(X , t) + ϕ̂(X ,X , t) and H (X , t) := H̃ (X , t) + Ĥ (X ,X , t), (4)

where ϕ̃ and H̃ denote microscopic fluctuations of the deformation map and the solvent-
volume flux, respectively. We refer to Fig. 1 for a graphical illustration.
Further, considering a Taylor expansion of the macroscopic contributions up to the

linear terms yields3

ϕ̂(X ,X , t) = ϕ(X , t) + F (X , t) · X
Ĥ (X ,X , t) = H (X , t) + 1

3
DivH (X , t)X ,

(5)

3We note that in (5)2 , we have assumed macroscopic isotropic swelling. Consequently, the linear expansion of the
solvent-volume flux is associated with the divergence and not the gradient ofH . From the following equations, it will
become clear that the considered form of the microscopic flux preserves the well-known structure of the diffusion–
deformation problem at the micro- and macroscale.
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Fig. 1 Graphical illustration of the computational homogenization of chemo-mechanical processes. The
macroscopic dual fields and moduli at a macroscopic material point X are determined by solving a
microscopic boundary value problem. The domain of the microscopic problem is chosen such that it
represents the heterogeneity of the microstructure in a representative manner and is thus referred to as
representative volume element (RVE). In a minimization-based variational formulation the RVE is driven by the
deformation gradient F as well as the solvent-volume fluxH and its divergence DivH

where F = Gradϕ is themacroscopic deformation gradient and ṡ = −DivH is the rate of
themacroscopic solvent-volume concentration. Inwhat follows,we assume that the origin
of the coordinate system is located at the geometric center of the RVE, i.e.,

∫

B0
X dV = 0.

From (4) we obtain the deformation gradient F and the divergence of the solvent flux
DivH as

F = F̃ + F and DivH = Div H̃ + DivH . (6)

The latter equation implies that the solvent-volume concentration can be decomposed
into fluctuative microscopic and constant macroscopic parts as s = s̃ + s. Integrating the
equations in (6) over the domain of the RVE with |B0| = vol(B0) yields

F = 1
|B0|

∫

B0
F dV = 1

|B0|
∫

∂B0
ϕ ⊗ N dA and

DivH = 1
|B0|

∫

B0
DivH dV = 1

|B0|
∫

∂B0
H · N dA,

(7)

where we have considered the following relations
∫

B0
F̃ dV =

∫

∂B0
ϕ̃ ⊗ N dA = 0 and

∫

B0
Div[H̃ ] dV =

∫

∂B0
H̃ · N dA = 0. (8)

The former equation is satisfied for continuous fluctuations of the deformation map
along the whole microstructure, where continuity also relates to the transition across the
(arbitrary) boundary of a periodic RVE. The restriction w.r.t. the continuity across an
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Fig. 2 Periodic boundary conditions associated with the minimization-based formulation of
chemo-mechanics. The boundary of the RVE B0 is split into B+

0 and B−
0 with unit outward normals

N+ = −N− =: N. At the respective material points X+ and X− on these boundaries, the deformation map is
considered to be periodic (ϕ(X+) = ϕ(X−)) and the normal solvent-volume fluxH is considered to be
anti-periodic (H (X+) · N+ = −H (X−) · N−)

RVE’s boundary is usually expressed as �ϕ̃� = 0 on ∂B0, where �(·)� = (·)+ − (·)− denotes
the jump of a quantity (·) across the boundary of an RVE. Analogously equation (8)2 is
satisfied for continuous normal projections of the solvent-volume flux, i.e., anti-periodic
normal projections �H̃� · N = 0 on ∂B0. We refer to Fig. 2 for a graphical illustration.

Constitutive functions at the microscopic level

As diffusion–deformation processes are dissipative in nature, they can be modeled by a
set of two constitutive functions given by an energy-storage function ψ̂ and a dissipation-
potential function φ̂. The function ψ̂(F , s) models the energy storage due to the defor-
mation of the material and the influx of the solvent molecules. It is assumed to have the
following additive form (Hong et al. [19,20], Böger et al. [4])

ψ̂(F , s) = ψ̂mech(F ) + ψ̂chem(s) + ψ̂coup(J, s), (9)

where ψ̂mech, ψ̂chem and ψ̂coup denote the mechanical, chemical and coupled chemo-
mechanical contributions. For the modeling of hydrogels, a neo-Hookean material model
can be considered for the mechanical energy ψ̂mech. The chemical energy ψ̂chem is usually
governed by a Flory–Rehner-type constitutive function (Flory and Rehner [13]). The term
ψ̂coup(J, s) in the energy-storage function models the coupling between deformation and
solvent volume and by relating the volume change of the material to the solvent-volume
concentration s. In the variational minimization formulation to be developed below, the
dissipation potential φ̂(H ;F , s) is a convex function of the solvent flux H .4 The forms of
these functions and their relevance for the specific problems at hand will be discussed in
the following sections.

Rate-type minimization principle of computational homogenization

The macroscopic potential density π ( ˙̃ϕ, H̃ ; Ḟ ,H ) of the homogenization problem at a
given macroscopic constitutive state {Ḟ , ṡ = −Div[H ]} can be described by the mini-

4Convexity of the dissipation potential function together with vanishing first derivatives at the origin guarantee a priori
fulfillment of the second law of thermodynamics.
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mization principle 5

π ( ˙̃ϕ�, H̃ �; Ḟ ,H ) = inf
˙̃ϕ∈W ˙̃ϕ

inf
H̃∈WH̃

1
|B0|

∫

B0
π (ϕ̇,H ) dV. (10)

This variational principle can be considered as a generalized Hill–Mandel condition and
involves the minimization of the volume-averaged microscopic potential density

π (ϕ̇,H ) := d
dt

ψ̂(F , s) + φ̂(H ;F , s) (11)

in the admissible function spaces

˙̃ϕ ∈ W ˙̃ϕ := { ˙̃ϕ ∈ H1(B0) | ˙̃ϕ+ = ˙̃ϕ− on ∂B0 = ∂B+
0 ∪ ∂B−

0 },
H̃ ∈ WH̃ := {H̃ ∈ H (Div,B0) | H̃+ · N+ = −H̃− · N− on ∂B0 = ∂B+

0 ∪ ∂B−
0 }.

(12)

Incremental variational principle at the microscale

In the numerical setting, the above given rate-type variational principle (10) is solved
incrementally at discrete times 0 < tn+1 ≤ T , where T denotes the ending time of a
process. It is assumed that at the beginning of a time interval [tn, tn+1] all variables are
known. In the following, we consider the notation (·)n for discrete variables at time tn and
drop the subscript for the variables at time tn+1, i.e., (·) := (·)n+1. Considering an implicit
Euler time integration with a time step τ = tn+1 − tn, we replace (10) with an alternative
incremental macroscopic potential density

πτ (̃ϕ�, H̃ �;F ,H ) = inf
ϕ̃∈Wϕ̃

inf
H̃∈WH̃

1
|B0|

∫

B0
πτ (ϕ,H ) dV (13)

in terms of the incremental microscopic potential density

πτ (ϕ,H ) := ψ̂(F , s) + τ φ̂(H ;Fn, sn). (14)

Here, the solvent-volume concentration is determined via implicit Euler integration such
that s = sn−τ DivH . Analogously, we determine s = sn−τDivH at themacroscale. Note
that in (14) the dissipation-potential function takes into account known state variables
{Fn, sn} at time tn in order to preserve a variationally consistent structure of the problem
(Miehe et al. [25], Böger et al. [4]). The admissible spaces in the incremental setting are
defined as

ϕ̃ ∈ Wϕ̃ := {̃ϕ ∈ H1(B0) | ϕ̃+ = ϕ̃− on ∂B0 = ∂B+
0 ∪ ∂B−

0 },
H̃ ∈ WH̃ := {H̃ ∈ H (Div,B0) | H̃+ · N+ = −H̃− · N− on ∂B0 = ∂B+

0 ∪ ∂B−
0 }.

(15)

5The index (·)� denotes a converged solution. To arrive at a compact notation, we will drop this index in the following
whenever there is no danger of confusion.
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Euler–Lagrange equations and linearization of the variational formulation

The necessary condition of the incremental variational formulation (13) yields

δπτ (̃ϕ, H̃ ;F ,H ) = 1
|B0|

∫

B0

⎡

⎢
⎣

δF̃
Div δH̃

δH̃

⎤

⎥
⎦ ·

⎡

⎢
⎣

∂F ψ̂

−τ∂sψ̂

τ∂H φ̂

⎤

⎥
⎦ dV = 0, (16)

where δϕ̃ ∈ Wϕ̃ and δH̃ ∈ WH̃ . Using integral theorems as well as employing the
periodicity conditions (15), we arrive at the incremental Euler–Lagrange equations

1. Balance of linear momentum Div[∂F ψ̂] = 0 in B0
2. Inverse Fickian law Grad[∂sψ̂] + ∂H φ̂ = 0 in B0
3. Continuity of tractions �∂F ψ̂� · N = 0 on ∂B0
4. Continuity of chemical potential �∂sψ̂� = 0 on ∂B0

(17)

In (17) we identify the constitutive equations for themicroscopic dual fields, i.e., the first
Piola–Kirchoff stress tensor P := ∂F ψ̂ and the chemical potential of the solvent-volume
concentration μ := ∂sψ̂ . The equation (17)2 describes an inverse form of Fick’s law. The
driving force of the diffusion process M := −Gradμ is determined constitutively from
the dissipation potential function viaM = ∂H φ̂.
Linearization of (16) leads to the following expression including the incremental micro-

scopic moduli tensor


δπτ (̃ϕ, H̃ ;F ,H ) = 1
|B0|

∫

B0

⎡

⎣
δF̃

Div δH̃
δH̃

⎤

⎦ ·
⎡

⎣
∂2FF ψ̂ −τ∂2F sψ̂ ·

−τ∂2sF ψ̂ τ 2∂2ssψ̂ ·
· · τ∂2HH φ̂

⎤

⎦ ·
⎡

⎣

F̃

Div
H̃

H̃

⎤

⎦ dV.

(18)

In the following sections, we will take advantage of (16) and (18) when we consider the
finite-element implementation of the homogenization problem.

Finite-element implementation of the homogenization procedure

For the numerical solution of the microscopic diffusion–deformation problem, conform-
ing quadrilateral Q1RT0 Raviart–Thomas-type finite elements are implemented [32]. This
choice is due to the required function spaceH (Div,B0) of the solvent-volume fluxH . An
alternative non-conforming discretization on the basis of standard Q1Q1 finite elements
usually yields non-physical behavior. For recent developments of equivalent minimiza-
tion principles incorporating a node-based finite-element discretization combined with
reduced integration we refer to [35].
In the framework of the Raviart–Thomas-type finite-element discretization, the fluctu-

ations of the deformation map ϕ̃ are approximated continuously using bilinear Q1 shape
functions, which are related to the nodal degrees of freedom deϕ̃ of a finite element. The
fluctuations of the solvent-volume flux H̃ are approximated considering linear RT0 shape
functions, which are related to the fluctuations of the flux degrees of freedom de

H̃
across

the edges of the quadrilateral element. We refer to Fig. 3a for a qualitative illustration.
Note that only the normal component of the solvent-volume flux hK = ∫

EK Hh ·N e dA
at an edge of the element EK is considered as degree of freedom. We refer to Raviart
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ξ

Xh(ξ)

X

P

A
Be
0dI

ϕ̃
dK

˜

Fig. 3 Q1RT0 Raviart–Thomas finite element and its mapping from the parametric to the physical space. a
The deformation map ϕ is continuously interpolated using node-based Q1 shape functions. The
solvent-volume fluxH is approximated using edge-based RT0 shape functions. b To obtain the RT0 shape
functions and their derivatives in the physical space, a Piola transformation from the parametric space
according to (21) is considered

N1 (ξ) N2 (ξ) N3 (ξ) N4 (ξ)

Fig. 4 Illustration of the RT0 shape functions in parametric space. The normal projections of the RT0 shape
functions are constant along the edge of a finite element in the parametric spaceA. The projection of the
shape function associated with edge K onto the edge EK is given by N̂K

H̃
(ξ) · N̂e

0 = 1/2 and onto all other

edges ÊL with L 
= K is N̂K
H̃
(ξ) · N̂e

0 = 0. The factor 1/2 is due to the length of the element edge in the

parametric space such that d̂K
H̃

= ∫

ÊK
Ĥh(ξ) · N̂e

0 dA

and Thomas [32], Brezzi and Fortin [5] for theoretical aspects and to Schwarz et al. [34],
Anjam and Valdman [1], Böger et al. [4], Teichtmeister et al. [35] for discussions of the
numerical implementation. The interpolation of the independent fields arises as

ϕ̃h =
nnode∑

I=1
NI

ϕ̃(ξ)d
I
ϕ̃ =: Ne

ϕ̃d
e
ϕ̃ and H̃h =

nedge∑

K=1
NK
H̃
(X)dK

H̃
=: Ne

H̃
de
H̃
, (19)

where the scalar shape functions NI
ϕ̃ are defined at the node I and the vectorial shape

functions NK
H̃

correspond to the edge K . While the former can be directly defined in a
so-called parametric space A = [−1, 1] × [−1, 1], the latter have to be computed via a
Piola transformation of the corresponding shape functions N̂K

H̃
in that parametric space

(from here on the notation (̂·) indicates quantities (·) formulated in the parametric space).
Similarly, dIϕ̃ denotes the array of the displacement components at the node I and dK

H̃

corresponds to the normal component of the solvent-volume flux at the edge K . An
illustration of the Raviart–Thomas shape functions in the parametric space A is given in
Fig. 4.
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The RT0 shape functions considered in the present contribution are given in the para-
metric space as

N̂1
H̃

=
[
1
4 (ξ1 + 1)

0

]

, N̂2
H̃

=
[

0
1
4 (ξ2 + 1)

]

, N̂3
H̃

=
[
1
4 (ξ1 − 1)

0

]

, N̂4
H̃

=
[

0
1
4 (ξ2 − 1)

]

.

(20)

The degrees of freedom need to be invariant under the change of coordinates from the
parametric space to the physical space, i.e., d̂K

H̃
= dK

H̃
. Thus, we apply a Piola transforma-

tion to map the vectorial shape functions and their derivatives from the parametric space
A to the reference element Be

0. We refer to Brezzi and Fortin [5] for more details and to
Fig. 3b for a graphical illustration. It follows

[·](X ) := P{[·](ξ)} = 1
Ĵ
Ĵ (ξ)[·](ξ ) with Ĵ := ∂Xh

∂ξ
and Ĵ := det Ĵ , (21)

where Xh : A → Be
0 refers to a map from the parametric space to a reference finite

element and is determined by Xh(ξ) = ∑nnode
I=1 NI

ϕ̃(ξ)X I in terms of the nodal coordinates
X I of the considered finite element.
Furthermore, it is important topoint out that, inorder tohave a consistentfinite-element

implementation for the flux degrees of freedom, we need to make sure that the degrees
of freedom on a common edge of two adjacent finite elements are identical. In order to
achieve this, we assume a positive orientation for an edge in a finite element Be whenever
the node numbers of the vertices of that edge increase in counterclockwise direction.
In contrast, when the node number decreases, we augment the RT0 shape function of
that edge with a negative sign. As a consequence, an outflux at an edge of a particular
finite element will always be associated with influx across the same edge of a neighboring
finite element. We refer to Schwarz et al. [34], Anjam and Valdman [1], Böger et al. [4],
Teichtmeister et al. [35] for more details on the numerical implementation.
Based on (19) we obtain the fluctuations of the deformation gradient and of the diver-

gence of the flux fields as

F̃h =
nnode∑

I=1
dIϕ̃ ⊗ GradNI

ϕ̃ =: Be
ϕ̃d

e
ϕ̃ and Div H̃h =

nedge∑

K=1
dK
H̃
Div NK

H̃
=: Be

H̃
de
H̃
. (22)

Having the above discretization at hand, the necessary condition of the incremental
minimization principle (16) in the finite-element setting can be written in form of the
microscopic residuum vector

R := 1
|B0|

nelem
A
e=1

π
τ ,e
,de = 1

|B0|
nelem
A
e=1

∫

Be
0

[
(Be

ϕ̃)T ∂F ψ̂h

(Be
H̃
)T (−τ∂sψ̂h) + (Ne

H̃
)T τ∂H φ̂h

]

dV = 0

with de :=
[
deϕ̃
de
H̃

]

, (23)

where the first Piola–Kirchhoff stress tensor P is implemented as a vector, i.e., P =
[P11, P22, P12, P21]T in two dimensions. The corresponding mechanical and coupled
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moduli tensors follow a similar structure. The tangent matrix of the linearized system of
equations reads

K := 1
|B0|

nelem
A
e=1

π
τ ,e
,dede

= 1
|B0|

nelem
A
e=1

∫

Be
0

[
(Be

ϕ̃)T ∂2FF ψ̂hBe
ϕ̃ (Be

ϕ̃)T (−τ∂2F sψ̂
h)Be

H̃
(Be

H̃
)T (−τ∂2sF ψ̂h)Be

ϕ̃ (Be
H̃
)T τ 2∂2ssψ̂

hBe
H̃

+ (Ne
H̃
)T τ∂2HH φ̂hNe

H̃

]

dV.

(24)

A converged microscopic state is obtained by solving the system of equations (16) itera-
tively using, for example, a Newton–Raphson method

d ⇐ d −K−1 R until ||R|| ≤ tolmicro. (25)

Effective macroscopic dual fields andmoduli tensor

In the numerical setting, taking the variation of πτ at the macroscopic material point
yields

δπτ = δ
{ 1

|B0|
nelem
A
e=1

πτ ,e
}

= 1
|B0|

nelem
A
e=1

⎡

⎢
⎢
⎢
⎣

δde

δF
DivδH

δH

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

π
τ ,e
,de

∂F ψ̂h

−τ∂sψ̂h + 1
3τ∂H φ̂h · X

τ∂H φ̂h

⎤

⎥
⎥
⎥
⎦

dV

= 1
|B0|

nelem
A
e=1

⎡

⎢
⎣

δF
DivδH

δH

⎤

⎥
⎦ ·

⎡

⎢
⎣

∂F ψ̂h

−τ∂sψ̂h + 1
3τ∂H φ̂h · X

τ∂H φ̂h

⎤

⎥
⎦ dV,

(26)

where R := πτ
,d =

nelem
A
e=1

π
τ ,e
,de vanishes at the solution point of the microscopic boundary-

value problem. As a consequence, the macroscopic first Piola–Kirchhoff stress tensor P
and the negative gradient of the chemical potential M (the latter being the driving force
of the macroscopic solvent-volume flux) are determined as averages of the corresponding
microscopic analogues

P := ∂Fπτ = 1
|B0|

nelem
A
e=1

∫

Be
0

∂F ψ̂h dV and M := ∂Hπτ = 1
|B0|

nelem
A
e=1

∫

Be
0

∂H φ̂h dV.

(27)

However, the macroscopic chemical potential follows from a different averaging process

μ := ∂sπ
τ = 1

|B0|
nelem
A
e=1

∫

Be
0

∂sψ̂
h − 1

3
∂H φ̂h · X dV. (28)

We observe that μ does not only depend on the average of the microscopic chemical
potential but also on its gradient and the spatial dimensions of the RVE. As a consequence,
themacroscopic effective response depends on the size of the RVE,whichwill be discussed
in detail in the next section.
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Considering a continuous setting and exploiting tensorial manipulations in (27) and
(28), we can express the effective dual fields in terms of the surface integrals over the
boundary of the RVE as

P = 1
|B0|

∫

∂B0
(P · N ) ⊗ X dA,

M = 1
|B0|

∫

∂B0
μN dA,

μ = 1
3|B0|

∫

∂B0
μN · X dA.

(29)

Adopting the notation F := [F , DivH , H ]T , we can write the first-order terms in the
linearization of (26) at the macroscale in a compact form as


δπτ = δF : ∂F Fπ
τ : 
F = 1

|B0|
nelem
A
e=1

[
δde

δF

]

·
[
π

τ ,e
,dede π

τ ,e
,deF

π
τ ,e
,Fde π

τ ,e
,F F

]

·
[

de


F

]

dV, (30)

where

π
τ ,e
,F F :=

⎡

⎣
∂2FF ψ̂h −τ∂2F sψ̂

h 0
−τ∂2sF ψ̂h τ 2∂2ssψ̂

h + 1
9 τX · ∂2HH φ̂h · X 1

3 τX · ∂2HH φ̂h

0 1
3 τ∂2HH φ̂h · X τ∂2HH φ̂h

⎤

⎦ , (31)

π
τ ,e
,de F :=

[
(Be

ϕ̃)T ∂2FF ψ̂h (Be
ϕ̃)T (−τ∂2F sψ̂

h) 0
(Be

H̃
)T τ∂2sF ψ̂h (Be

H̃
)T τ 2∂2ssψ̂

h + (Ne
H̃
)T ( 13 τ∂2HH φ̂h · X ) (Ne

H̃
)T τ∂2HH φ̂h

]

. (32)

Combining (23), (26) and (30), we obtain an elimination equation at the macroscopic
level for the microscopic degrees of freedom, that is


d =
nelem
A
e=1


de = −
[

1
|B0|

nelem
A
e=1

π
τ ,e
,dede

]−1[ 1
|B0|

nelem
A
e=1

π
τ ,e
,deF

]

: 
F = −K−1L : 
F.

(33)

Considering the results of the latter equation in (30), we obtain


δπτ = δF : C : 
F = δF :
{

1
|B0|

nelem
A
e=1

π
τ ,e
,F F − LTK−1L

}

: 
F. (34)

wherein we have identified the macroscopic coupled moduli

C = 1
|B0|

nelem
A
e=1

π
τ ,e
,F F − LTK−1L . (35)

Now having determined the macroscopic dual fields (27) and (28) as well as the macro-
scopic moduli (35), we could solve a macroscopic boundary value problem under pre-
scribed boundary and initial conditions by using a conforming finite-element discretiza-
tion analogous to the section “Finite-element implementation of the homogenization
procedure”.
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Size effects in the homogenization of transient diffusion
In equations (28), (31) and (32), we observe terms that are scaled with the coordinates of
the RVE. This gives rise to a size-dependent effective response at the macroscale. To have
more insight into the problem, we simplify the above described formulation (10) to the
diffusion in rigid solids by neglecting any elastic effects. Then, the problem at hand reads

πτ (H̃ �;H ) = inf
H̃∈WH̃

1
|B0|

∫

B0
ψ̂chem(s) + τ φ̂(H ) dV. (36)

To determine the macroscopic response of the material, we take the variation of (36) and
arrive at the definition of the macroscopic chemical potential

μ = 1
|B0|

nelem
A
e=1

∫

Be
0

∂sψ̂
h
chem − 1

3
∂H φ̂h · X dV. (37)

Considering the dissipation-potential function φ̂(H ) = 1
M ‖H‖2 for the diffusion process

in rigid solids with mobility parameter 6 M, we can reformulate the size-dependent term
μsize of the chemical potential μ in (37) by considering (4) and (5) as

μsize ∝ τ

3|B0|
nelem
A
e=1

∫

Be
0

1
M

H ·XdV = τ

3|B0|
nelem
A
e=1

∫

Be
0

1
M

(

H + H̃ + 1
3
DivHX

)

·XdV.

(38)

Furthermore, after some simple manipulations, we obtain

μsize ∝ τ

3|B0|
nelem
A
e=1

(

H ·
∫

Be
0

1
M

X dV +
∫

Be
0

1
M

H̃ ·X dV + DivH
3

∫

Be
0

1
M

‖X‖2 dV
)

.

(39)

We observe that the macroscopic effective response depends on the size of the RVE and
the mobility parameter M. Note that the first and second term on the right-hand side of
(39) vanish for specific realizations of RVEs.7 In general, however, we expect variations
among the effective responses depending on the particular selection of RVEs fromperiodic
microstructures. Due to the size dependence, the effective response of a single unit cell
D differs from the effective response of an ensemble of identical unit cells nD, n ∈ N3.
In the following, we provide some numerical examples that describe the mentioned size
effect for RVEs with different sizes and material parameters.

6The mobility parameterM can be computed via the Stokes–Einstein relation

M = νD
kBT

= ν

6πRη
,

where ν is the volume of a single solvent molecule, D is the diffusivity, kB is the Boltzmann constant, T is the absolute
temperature, R is the radius of the solvent molecules and η is the viscosity of the solvent [10,20].
7One such realization is given by a symmetric RVE that is parameterized with coordinate axes that originate from the
spatial center of the RVE.
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Representative numerical examples
In order to demonstrate the capabilities of the variational homogenization procedure
discussed above, we present some numerical examples. The first numerical examples
consider pure diffusion phenomena and investigate the influence of material parame-
ters, geometry as well as the size of RVEs on the effective, macroscopic response of
composite materials (see, the section “Investigation of the macroscopic properties of
porous rigid solids”). In a second study, we extend the formulation by elastic effects of
the solid matrix and couple it to the diffusion processes. In doing so, we will investigate
swelling-induced pattern transformations of periodic hydrogels (see, the section “Coupled
diffusion—deformation processes in periodic hydrogels”).
In what follows, we assume that the relaxation time of the material is much longer than

the solvent’s diffusion time. We thus neglect any viscoelastic effects of the material and
consider standard Fickian-type diffusion [8,19,20]. For an implementation that takes into
account the viscoelasticity of the material we refer to Govindjee and Simo [15].

Investigation of the macroscopic properties of porous rigid solids

In this subsection, we analyze the influence of material parameters and the size of RVEs
on the macroscopic response of two-phase materials. We will find that the macroscopic
mobility parameter lieswithin the classicalVoigt andReuss bounds for vanishingRVE size.

Microscopic constitutive functions

In the section “Constitutive functions at the microscopic level”, we have discussed the
basic forms of the energy-storage and dissipation-potential function. In case of a pure
diffusion processes (for ϕ = const. with F = 1), the energy-storage function reduces to
ψ̂(s) = ψ̂chem(s). As our main focus is to investigate fundamental effects, we select the
simple quadratic function (Kaessmair and Steinmann [21])

ψ̂chem(s) = A
2

(

s − 1
2

)2
, (40)

where A is a chemical material parameter. As dissipation-potential function we again
consider φ̂(H ) = 1

M ‖H‖2 with the mobility parameterM.

Description of the problem

In the following, we consider periodic microstructures with circular inclusions. For such
microstructures it is straightforward to indentify a periodic unit cell (see Fig. 5a). In a
typical homogenization framework, the effective response of the material could be com-
puted uniquely by considering an RVE that resembles exactly that unit cell. However, as
we could see in the section “Size effects in the homogenization of transient diffusion”, the
homogenization of transient diffusion processes comes along with well-known size effects
in the sense that the physical size of the considered RVE influences its effective response.
In order to analyze this size effect, we will alter the size of associated RVEs in the

following way. On the one hand, we will change the size by adjusting the lateral length of
the underlying unit cell. On the other hand, we will change the size by composing an RVE
of a certain number of unit cells. In both cases the RVEs will be generated from a primitive
square-shaped unit cell having the lateral length of 1 mm. We adopt the following name
convention: ’nRVEmm’ designates a unique realization of an RVE, where n indicates the



Polukhov and Keip Adv. Model. and Simul. in Eng. Sci.           (2020) 7:35 Page 15 of 26

a b c

1

2

−1.0

γ(t) γ(t)

t/s t/s00 1. 10 .0

1.0

2.0

l m
ic
r
o

lmicro

Fig. 5 RVE under macroscopic loading conditions. An RVE with circular inclusion of volume fraction
f0 = π/16 is attached to a macroscopic material point X and driven by the macroscopic fieldsH = 0m/s
and DivH = γ s−1

scaling of the dimensions of the primitive unit cell andmm indicates a pattern ofm × m
primitive unit cells. For example, 2RVE11 and RVE22 both represent an RVE with side
length of 2 mm, but while the former is realized by scaling the primitive unit cell by a
factor of 2, the latter is made up of 2 × 2 primitive unit cells. Please refer to Fig. 8 for a
corresponding visualization. In all following simulations, we consider a volume fraction
of the inclusions of f0 = π/16.
In a purely diffusive process, the RVEs can be driven by themacroscopic solvent-volume

fluxH and its divergenceDivH .As the size effect is due to the linear termsappearing in the
solvent flux vector in (5)2 (see also (39)), we take into account the following macroscopic
loading conditions

H = 0 m/s and DivH = γ s−1, (41)

where γ is a loading parameter. In the current case, we assume that the divergence of the
macroscopic solvent-volume flux increases linearly with time, i.e, γ ∝ t, see Fig. 5b. All
simulations are carried with the time incrementation τ = 0.01 s. The chemical param-
eter of the matrix and the inclusion is selected as Amat = Aincl = 10N/mm2. Further-
more, at the beginning of the simulation, the solvent-volume concentration at micro- and
macroscale is assumed as s(t = t0) = s(t = t0) = 0. Dirichlet boundary conditions for the
normal projections of the fluctuations of the solvent-volume flux are considered, i.e., we
set8 H̃ · N = 0 on ∂B0.

Influence ofmobility parameters on the effectivemacroscopic response

Wenow investigate the influence of mobility parameters of the individual constituents on
the macroscopic response of the two-phase material.
In a first step, we consider different kinds of square-shaped RVEs with constantmobility

parameter Mmat = 0.1mm4/(Ns) of the matrix and altering mobility parameters of the
inclusions.

8We note that in the Raviart–Thomas finite-element implementation anti-periodic boundary conditions need to be
considered for the flux degrees of freedom across the boundary of the RVE in order to guarantee a continuous solvent
normal flux throughout the microstructure. This can be achieved, for example, by augmenting the shape functions
corresponding to the edge-based degrees of freedom at a boundary point X+ on ∂B+ with an opposite sign compared
with the shape functions at X− on ∂B−.



Polukhov and Keip Adv. Model. and Simul. in Eng. Sci.           (2020) 7:35 Page 16 of 26

In Fig. 6a we observe discrepancies in the results depending on the realization of the
respective RVE. An increasing size of the RVE leads to a higher magnitude of the effective
chemical potential. This effect is due to the last term in (39), which arises as the result of
the transient nature of the problem. We refer to Larsson et al. [24] for a similar analysis.
As expected from (39), the discrepancies of the effective responses of different RVEs
decrease when we increase the mobility parameter of the inclusions. However, since we
keep the mobility parameter of the matrix unchanged at a comparably low level (Mmat =
0.1mm4/(Ns)) the size effect is still pronounced. Further comparing the responses of
2RVE11 and RVE22, we observe that when the mobility parameter of the matrix and the
inclusion have a similar magnitude, the corresponding effective responses nearly coincide
(Fig. 6b). In fact, if we would assumeMmat ≡ Mincl , the responses would be identical since
then the RVEs are homogeneous.
In Fig. 7, we show the influence of the mobility parameter of the matrix material on the

effective response for fixed mobility parameter of the inclusionsMincl = 10−4 mm4/(Ns).
We observe decreasing discrepancies in the effective responses with increasing mobility
parameter of the matrix. This effect can be attributed to the higher volume fraction of the
matrix.
Contour plots of themicroscopic chemical potentialμ for different realizations of RVEs

are shown in Fig. 8. Remarkable differences in the microscopic response of the RVEs are
evident. This confirms that the underlying periodicity cannot be used to reduce compu-
tations over an enlarged RVE to computations over a unit-cell RVE.
Above we have demonstrated that the effective chemical potential strongly depends on

the mobility parameters of the individual phases as well as on the size and realization of
the RVE. We now take a close look at the evolution of the chemical potential for various
RVEs over time (Fig. 9). In analogy to the previous examples, we consider square RVEs
that are either made up of a certain number of equal-sized unit cells or made up of a
scaled-up unit cell. The macroscopic loading is again formulated in terms of the loading
parameter γ , which will first be linearly decreased to aminimum value and then increased
to zero. After that, it will be kept fixed. Please refer to Fig. 5c for a graphical illustration, in
which the negative sign of the loading parameter is related with an influx of the solvent.
For time incrementation we consider the time step τ = 0.1 s.
In Fig. 9a we observe that the different RVEs show the expected differences in their

initial effective response. However, after a certain period of time the responses of all
RVEs converge to the same stationary solution, where low mobility parameters of the
inclusions lead to longer relaxation times (compare Fig. 9a–c). We further observe that
an increase of the mobility parameter of the inclusions has negligible influence on the
behavior under loading, but strongly influences the unloading phase (compare Fig. 9a,d
with Fig. 9b,e respectively). In contrast to that, changing the mobility parameter of the
matrix strongly influences the loading phase, but shows qualitatively similar trends in the
unloading regime (compare Fig. 9a,d with Fig. 9c,f respectively). As a final observation
we note that the stationary solutions of different RVEs converge to the same values, even
when thematerial parameters of the individual phases are different. (compare Fig. 9b with
Fig. 9e). This behavior could be expected from the size-dependent contribution of the
effective chemical potential given in (39). There, the first term has been assumed zero
per definition and the last term of the right-hand side is zero after full unloading. As
a consequence, the second term fades out over time due to internal redistributions of
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Fig. 7 Effective chemical potential depending on the size of the RVE and the mobility parameter of the
matrix. The evolution of the macroscopic chemical potential μ for different realizations of RVEs is depicted as
a function of the divergence of the macroscopic solvent-volume flux DivH for selected mobility parameters
of the matrix given by aMmat = 0.1 mm4/(Ns) and bMmat = 5.0 mm4/(Ns). Like in the previous study (Fig. 6)
we observe that the effective chemical potential μ depends strongly on the size of the RVE. The observed
discrepancies decrease with increasing mobility parameter of the matrix
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Fig. 8 Chemical potential field μ in consideration of two different periodic RVEs at three different instances of
time. Although the considered RVEs are composed of periodic unit cells, we observe remarkable differences
in their response. The chemical parameters for the matrix and the inclusions are Amat = Aincl = 10N/mm2.
The mobility parameter of the matrix is given byMmat = 0.01mm4/(Ns) and the mobility parameter of the
inclusions isMincl = 10−4 mm4/(Ns)

the solvent such that finally H̃ → 0 and thus μsize → 0. In the stationary state, the size-
independent termof themacroscopic chemical potential (37) is identical for all considered
RVEs since we assume the same chemical parameters for both phases in the microscopic
chemical energy (40).
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Fig. 10 Selected macroscopic moduli depending on the size lmicro of square-shaped RVEs with circular
inclusions with volume fraction f0 = π/16. The chemical parameter of the matrix and the inclusions are
chosen to Amat = Aincl = 10N/mm2. The mobility parameters of the matrix and the inclusions are
Mmat = 0.1 mm4/(Ns) andMincl = 0.0001 mm4/(Ns) , respectively. aWe observe that for vanishing size of the
RVE lmicro → 0, the macroscopic chemical parameter ∂2ssπ converges to the homogeneous solution
〈∂2ssψ̂〉 = 1

|B|
∫

B ∂ssψ̂ dV . b Furthermore, for vanishing size of the RVE, the macroscopic mobility parameter

∂2
HH

π lies firmly within the Voigt and Reuss bound according to (42)

Influence of the size of the RVE on themacroscopicmoduli

Next, we study the effect of the size of the RVE on the resulting macroscopic moduli. The
influence of the size of the RVE forMmat = 10−1 mm4/(Ns) andMincl = 10−4 mm4/(Ns)
on the effective response is shown in Fig. 10
We observe that as the size of the RVE increases the macroscopic chemical parame-

ter ∂2s sπ as well as the macroscopic mobility parameter 1/(∂2
H1H1

π ) (see (35)), increase
monotonically although the microscopic material parameters are not changed. However,
for lmicro → 0, the macroscopic moduli saturate. As becomes visible in Fig. 10a, the
macroscopic chemical parameter approaches the average value of the microscopic chem-
ical parameters, i.e., 〈∂2ssψ〉 := 1

B0|
∫

B0
∂2ssψ dV = 10 N/mm2. Analogously, in Fig. 10b,

the macroscopic mobility parameter for lmicro → 0 is bounded by the classical Voigt and
Reuss bounds (Zohdi and Wriggers [43])

(
1

|B0|
∫

B0
∂2H1H1 φ̂ dV

)−1

︸ ︷︷ ︸
Reuss bound

≤ 1
(∂2

H1H1
π )

≤ 1
|B0|

∫

B0
(∂2H1H1 φ̂)

−1 dV
︸ ︷︷ ︸

Voigt bound

. (42)

To further study the influence of the size of the RVE depending on the mobility param-
eter of the microstructure, we provide three-dimensional plots for the different mobility
parameters of the matrixMmat = {0.001, 0.1, 1.0} mm4/(Ns) in Fig. 11.
We plot the macroscopic chemical parameter and the macroscopic mobility parameter

against RVE size (lmicro ∈ [0.002, 2.0] m) and mobility parameter of inclusions (Mincl ∈
[0.001, 10]mm4/(Ns)) in Fig. 11a–c and d–f, respectively.
In Fig. 11a–c, we observe that the macroscopic chemical parameter is highly dependent

on the RVE size lmicro as well as the mobility parameter of the matrix material Mmat . As
Mmat increases the macroscopic chemical parameter decreases. However, the influence
of the mobility parameter of the inclusions is lower than the one of the matrix material. In
Fig. 11c, we see that asMincl → 0 the effective chemical parameter increases in the given
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Fig. 11 Macroscopic incremental moduli depending on mobility parameters and size of the RVE. a–c
Macroscopic chemical parameter and d–f selected macroscopic mobility parameter depending on the
mobility parameter of the matrixMmat = {0.0001, 0.1, 1.0}mm4/(Ns) and the inclusion
Mincl ∈ [0.001, 10.0]mm4/(Ns) as well as the size of the RVE lmicro ∈ [0.002, 2.0] N/mm2. g-i Red areas indicate
regions of the macroscopic mobility parameter that are bounded from above by the Voigt bound

range. In all instances of Mmat , Mincl and lmicro, the macroscopic chemical parameter
approaches 10 N/mm2 when the RVE size approaches zero.
In Fig. 11d–f, we observe that the macroscopic mobility parameter is highly dependent

on the size of the RVE and the mobility parameter of the matrix. We also see that for
lower values of matrix mobility parameter, the influence of the mobility parameter of the
inclusions becomes more pronounced. Additionally, the RVE size becomes more relevant
for increasing magnitudes ofMmat .
Finally, in Fig. 11g–i we illustrate regions of macroscopic mobility parameter that are

bounded from above by the classical Voigt bound (42). It is evident that low magnitudes
of matrix mobility parameter lead to larger regions bounded by the Voigt bound. The size
of the RVE has a similar influence on this region.

Coupled diffusion–deformation processes in periodic hydrogels

We now present a numerical example that demonstrates the coupled chemo-mechanical
response of a two-phase periodic hydrogel microstructure. To be specific, we analyze a
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pattern transformation due to diffusion-induced swelling phenomena (we refer to Zhu
et al. [42] for experimental evidence). In order to model such phenomenon, we need to
consider appropriate constitutive equations that take into account the coupled response
of hydrogels. The subsequent sections are thus first devoted to the discussion of the
used microscopic constitutive functions. Thereafter we analyze the behavior of a peri-
odic hydrogel in consideration of typical geometrical and physical properties under given
macroscopic loading conditions.

Microscopic constitutive functions

We assume that the mechanical contribution of the energy-storage function in (9) can be
described by a neo-Hookean function. The chemical energy function is considered to be
of the Flory–Rehner-type. These functions are given as

ψ̂mech(F ) = γ

2
(F : F −3−2 ln J ) and ψ̂chem(s) = α

[

s ln
(

s
1 + s

)

+ χs
1 + s

]

, (43)

where α is amixingmodulus and χ is a dimensionless Flory–Huggins interaction parame-
ter. The coupling of the mechanical and the chemical response of the material is modeled
with the function

ψ̂coup(J, s) = ε

2
(J − 1 − s)2, (44)

where ε is a penalty parameter enforcing the volumetric constraint J = 1 + s, see Böger
et al. [4]. The dissipation-potential function is a convex function of the solvent flux

φ̂(H ;Fn, sn) = 1
2Msn

Cn : (H ⊗ H ), (45)

whereC is the right Cauchy–Green tensor andM is amobility parameter (Böger et al. [4]).
We note that the swelling-volume concentration s ≥ 0 is a non-negative quantity and

s = 0 corresponds to a dry hydrogel polymer network. However, due to the present
singularity of (43)2 at the dry state we employ a stress-free pre-swollen state as the refer-
ence configuration for the Flory–Rehner energy function. We refer to Hong et al. [19,20],
Böger et al. [4] for detailed discussions. Consequently, we write the final forms of the
energy-storage function

ψ̂ = γ

2J0
[J2/30 F : F−3−2 ln(JJ0)]+ α

J0

[

s ln
(

s
1 + s

)

+ χs
1 + s

]

+ ε

2J0
(JJ0−1−s)2, (46)

and the dissipation-potential function

φ̂ = 1
2J1/30 Msn

Cn : (H ⊗ H ), (47)

where J0 is a Jacobian that characterizes the volume change due to uniform pre-swelling.
The initial solvent-volume concentration is determined from the assumption of a stress-
free reference configuration as

s0 = γ

ε

(
J−1/3
0 − 1

J0
) + J0 − 1. (48)

Themacroscopic solvent concentration s0 at the pre-swollen state is defined as the average
of the microscopic solvent-volume concentration s0.



Polukhov and Keip Adv. Model. and Simul. in Eng. Sci.           (2020) 7:35 Page 23 of 26

Table 1 Material parameters of the two-phase periodic hydrogel composites

No. Parameter Name, unit Matrix Inclusion

1. γ Shear modulus, N/mm2 0.1 10−4

2. α Mixing modulus, N/mm2 24.2 24.2

3. χ Mixing parameter, – 0.1 0.1

4. M Mobility parameter, mm4/(Ns) 10−4 103

5. ε Penalty parameter, N/mm2 10 10−3

6. J0 Pre-swollen Jacobian, – 1.01 1.01

Description of the problem

To analyze the effective chemo-mechanical behavior of a hydrogel we consider a two-
phase square-shaped RVE with size lmicro = 2 mm build out of four periodic unit cells
(the unit cell is depicted in Fig. 5). The volume fraction of the inclusions is π/16. The
inclusions are softer than the matrix and have a higher mobility parameter. The material
parameters are listed in Table 1.
The RVE is loaded with the macroscopic fields

F = 1, H = 0 m/s and DivH = −10−3 s−1. (49)

in consideration of periodic boundary conditions for the fluctuations of the deformation
map ϕ̃ and homogeneous Dirichlet boundary conditions for the fluctuations of the out-
ward normal flux H̃ · N . The computations are performed with a time incrementation
of τ = 0.1 s. To ensure that the problem is well-defined, we fix the fluctuations of the
deformation map at the corner nodes of the RVE.

Swelling-induced pattern transformation of a periodic hydrogel

As a numerical example, we analyze a swelling-induced pattern transformation of a two-
phase periodic hydrogel. The periodic RVE is discretized by using 16, 000 Q2RT0 finite
elements. In Fig. 12, we illustrate contour plots of the P11-component of the first Piola–
Kirchhoff stress at three different time instances.
We observe that initially the soft inclusions having a volume fraction of π/16 shrink

uniformly until a critical loading point is reached. At critical loading, the RVE under-
goes a pattern transformation in the form of a buckling mode. A similar behav-
ior has been observed in experiments by Zhu et al. [42]. When the microstruc-
ture buckles the shape of the inclusions becomes non-circular, a state which is typi-
cally referred to as the diamond-plate pattern [42]. Such an instability mode has also
been observed by Bertoldi et al. [2] for periodic elastic structures with voids or soft
inclusions under purely compressive loading. To trigger the buckling mode shown
in Fig. 12, we have slightly perturbed the finite-element mesh in the given direc-
tions.

Summary
We provided a computational homogenization framework for diffusion–deformation
processes within a variationally consistent minimization-based setting that takes into
account the deformation map and solvent-volume flux as independent field variables.
We have discussed the theoretical aspects as well as the finite-element implementa-
tion of the formulation. The latter was realized by means of a conforming Raviart–
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−0.125 0.0025 −0.29 0.005 −0.62 0.0024P11/(N/mm2)P11/(N/mm2)P11/(N/mm2)

t1 = 80 s t2 = 110 s t3 = 120 s

Fig. 12 Pattern transformation due to macroscopically driven swelling of a periodic RVE. Due to swelling of
the matrix, the microscopic inclusions initially shrink homogeneously. Then, at a critical loading point, the
periodic RVE undergoes a pattern transformation such that the initially circular inclusions deform to
non-circular shapes. The contour shows the P11 component of the first Piola-Kirchhoff stress tensor P at three
different time steps for an RVE build out of four unit cells

Thomas-type discretization. By doing so, we were able to compute the macroscopic
dual fields and incremental moduli in the numerical setting. Consistent with previ-
ous works from the literature, we found that the formulation yields a size-dependent
macroscopic response. We confirmed this effect in a number of numerical examples
by consideration of different RVEs with different mobility parameters and sizes. We
further confirmed that the macroscopic mobility properties are bounded by the classi-
cal Reuss and Voigt bounds when the RVE size approaches zero. We also presented a
numerical example showing a swelling-induced buckling mode of a soft periodic hydro-
gel.
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