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Introduction
The problem of combustion of polydisperse fuel spray in a laminar boundary layer flow 
is very important from a practical point of view and has a large number of possible appli-
cations. The most common description of this problem is discussed by [1–5] when the 
spray is modeled by the “sectional approach”. This method is based on dividing the drop-
let size domain into sections and dealing only with one integral quantity in each section 
i.e., number, surface area of droplets, or volume. The advantage of this method is that the 
integral quantity is conserved within the computational domain and the number of con-
servation equations is reduced to be simply equal to the number of sections. The natural 
generalization of this method is to describe the size of the droplets with a probability 
density function as occurred in this paper [6–10]

Most problems in engineering applications are described by a system of partial dif-
ferential equations (PDE) which is usually difficult to solve. Using the similarity trans-
formation method [11, 12] the system can be converted to an ordinary differential 
equations (ODE) set by combining two independent variables into a single independent 
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variable [13]. The new set can be solved by a variety of numerical methods. However, 
with further assumptions that relate to the transport properties, these set of ODEs can 
be uncoupled mathematically or can have simpler forms, almost similar to the form that 
is obtained from the incompressible boundary layer analysis. Hence, the simplified ODE 
set makes it possible to obtain the solution from the already existing solutions of the 
incompressible analysis and also reduces the computing time of the numerical simula-
tion [14].

In this paper, we apply the Lees-Dorodnitsyn similarity transformation and the cor-
responding similar solution based on the compressible stream function to the new con-
tinuous model. We solve the model numerically and compare our results to the sectional 
approach model.

Physical assumptions and governing equations
The physical model is a system of nonlinear partial differential equations in two dimen-
sional x and y, steady state, compressible, laminar boundary layers and consists of a multi 
size (polydipserse) spray of evaporating droplets. The analysis of the spray is restricted to 
the no slip condition between the droplets and the boundary layer flow field [1].

Generally, in the discrete case, the size distribution of the spray droplets is described 
by the concentration of discrete droplets of various sizes per unit volume of fluid, 
ni(x, y, z, t), as a function of the radius r, the spatial coordinates x,  y,  z and of time t, 
where i = 1, 2, 3, . . . i.e., it is assumed that each droplet consists of an integer multiple of 
monomers [2]. The concentration conservation equation for each i-mer is given by:

By dividing the entire droplet size domain into m arbitrary sections, Tambour [1] defined 
the integral quantity, Qj(x, y, z, t), to be an integral quantity within the jth section. This is:

where kj−i + 1 and kj denote the number monomers in the smallest and largest droplets 
respectively, in the jth section.

In the continuous case we should replace the summation by integral as follows:

where v is the volume of the droplets.
In our analysis we describe the spray equation in terms of the droplet radius. Hence, 

in two dimensional x and y, the droplets radius are described by the probability den-
sity function n(x, y, r), such that the integral over all droplets provides the total number 
of droplets per unit volume. This quantity is denoted by Q0. In general the distribution 
function of the ith moment following the notation of [15] is:

(2.1)
∂ni

∂t
+ v · ∇ni = Di∇2ni − Eini + Ei+1ni+1, i = 1, 2, 3, . . .

(2.2)Qj(x, y, z, t) =
kj
∑

i=kj−i+1

iγ ni(x, y, z, t), j = 1, 2, 3, . . . ,m,

(2.3)Q(v, t) =
∫

vγ n(v, t)dv.

(2.4)Qα

(

x, y
)

=
∫ ∞

0

rαn(x, y, r)dr, α = 0, 1, 2, 3.



Page 3 of 15Nave  Adv. Model. and Simul. in Eng. Sci.  (2015) 2:20 

For any representation of a droplet size distribution function the assumption is made 
that the droplets are approximately spherical. Using this assumption, one can see that 
the moments Q2 and Q3 represent physical quantities, the knowledge of which is useful 
for modeling sprays. The surface area of the droplets per unit total volume is 4πQ2, and 
the liquid volume is 4π

3
Q3. More details about these four moments can be found in [16].

Under the above assumptions, the governing equations are:

Continuity equation

Momentum equations

Energy equation

Spray equation

Boundary conditions The boundary conditions at y = 0 are given by:

Nondimensional model and similarity transformation
In order to convert the model to a non-dimensional one, we define the following non-
dimensional coordinates as follows:

The similarity solutions are valid for Reynolds numbers which are large enough, so 
that the classical boundary-layer assumptions can be applied. Because Reynolds num-
ber is a function of L, Re = ρeUeL/µe, hence the characteristic value of L can be taken 
as 10 cm.

(2.5)
∂(ρu)

∂x
+

∂(ρv)

∂y
= 0,

(2.6)ρu
∂u

∂x
+ ρv

∂u

∂y
= −

∂p

∂x
+

∂

∂y

(

µ
∂u

∂y

)

,

(2.7)
∂p

∂y
= 0,

(2.8)ρu
∂h

∂x
+ ρv

∂h

∂y
= u

∂p

∂x
+

1

Pr

∂

∂y

(

µ
∂h

∂y

)

+ ν

(

∂u

∂y

)2

,

(2.9)ρu
∂Qα

∂x
+ ρv

∂Qα

∂y
= ρD

∂2Qα

∂y2
− BQα ,

(2.10)

u(x, 0) = 0, v(x, 0) = v(x), h(x, 0) = h(x),
∂h(x, 0)

∂y
= 0,

u(x, y → ∞) → Ue(x), h(x, y → ∞) → he(x), Qα = Qα0 ,
∂Qα

∂y
= 0

(3.1)
u∗ =

u

Ue
, v∗ =

v

Ue
, y∗ =

y

L
, x∗ =

x

L
, h∗ =

h

he
,

µ∗ =
µ

µe
, p∗ =

p

ρU2
e

, ρ∗ =
ρ

ρe
,
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Then, the original Eqs. (2.5)–(2.9) become:

where

The model in terms of stream function

Our aim in this section is to define the Eqs. (3.2)–(3.6) in terms of stream function. 
For this purpose, the energy equation can be rewritten in terms of the total enthalpy: 
H = h+ u2/2. For the second step for the similarity transformation and the correspond-
ing similar solutions, the compressible stream function can be defined according to [12] 
by (Henceforth, asterisk will be omitted from all non-dimensional quantities):

The stream function satisfies the continuity Eq. (2.5). First we transform the energy and 
momentum equations and then we will elaborate on the spray equation.

Substituting Eq. (3.8) into the momentum Eq. (3.3) and into the energy Eq. (3.5) yields 
these equations in terms of the stream function in the form of:

(3.2)
∂(ρ∗u∗)

∂x∗
+ ∂(ρ∗v∗)

∂y∗
= 0,

(3.3)ρ∗u∗
∂u∗

∂x∗
+ ρ∗v∗

∂u∗

∂y∗
= −

∂p∗

∂x∗
+

1

Re

∂

∂y∗

(

µ∗ ∂u
∗

∂y∗

)

,

(3.4)
∂p∗

∂y∗
= 0,

(3.5)

ρ∗u∗
∂h∗

∂x∗
+ ρ∗v∗

∂h∗

∂y∗
= (κ − 1)M2

e u
∗ ∂p

∗

∂x∗
+

1

Pr

1

Re

∂

∂y∗

(

µ
∂h∗

∂y∗

)

+ ν̄

(

∂u∗

∂y

)2

+
(κ − 1)M2

e

Re
ν̄

(

∂u∗

∂x∗

)

,

(3.6)u∗
∂Qα

∂x∗
+ v∗

∂Qα

∂y∗
=

D

UeL

∂2Qα

∂y∗2
−

LB

Ue
Qα ,

(3.7)ν̄ =
µe

ρe
, Re =

ρeUeL

µe
, κ =

Cp

Cv
, (κ − 1)M2

e =
U2
e

he
.

(3.8)
∂�

∂y
= ρu,

∂�

∂x
= −ρv.

(3.9)
∂�

∂y

∂

∂x

(

1

ρ

∂�

∂y

)

−
∂�

∂x

∂

∂y

(

1

ρ

∂�

∂y

)

= −
∂p

∂x
+

∂

∂y

[

µ
∂

∂y

(

1

ρ

∂�

∂y

)]

,

(3.10)

∂�

∂y

∂H

∂x
−
∂�

∂x

∂H

∂y

= (1−1/Pr)

{

µ

[

∂

∂y

(

1

ρ

∂�

∂y

)]2

+
1

ρ

∂�

∂y

∂

∂y

[

µ
∂

∂y

(

1

ρ

∂�

∂y

)]

}

+
1

Pr

∂

∂y

(

µ
∂H

∂y

)2

.
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According to the incompressible boundary layer equations, the dependent variable 
transformations are introduced as follows:

where the subscript η indicates partial differentiation. The form of the enthalpy transfor-
mation, Eq. (3.11), states that the compressible boundary layer is expected to be similar 
with respect to a non-dimensional total enthalpy profile rather than the static enthalpy 
or temperature profile, as in the case for the incompressible constant property boundary 
layer.

Let us define the independent variable transformations as follows:

From Eq. (3.8):

⇒

Integrating Eq. (3.14) yields the expression for η as follows:

where ψ(x) will be determined from the transformed momentum and energy equations.
Using the conditions at the edge of the boundary layer as reference condition results in

which, from ∂p/∂y = 0 and the equation of state ρµ = C̃(η)ρeµe. The coefficient C̃(η) 
can be assumed as a constant according to the Sutherland viscosity law.

Substituting Eqs. (3.12), (3.15), (3.16) and the equation of state into the momentum Eq. 
(3.3) and energy Eq. (3.5) yield

(3.11)

�(x, y) = ψ(x)f (ξ , η),

u(x, y) = Ue(x)
∂f (ξ , η)

∂η
,

Q(x, y) = Q(η)Qw(ξ),

H(x, y) = He(x)g(ξ , η),

(3.12)ξ = ξ(x), η = η(x, y).

(3.13)
∂�

∂y
= ψ(x)

∂η

∂y

∂f (ξ , η)

∂η
= ρu = ρUe(x)

∂f (ξ , η)

∂η
,

(3.14)
∂η

∂y
=

Uxρ

ψ(x)
.

(3.15)η =
Ue(x)

ψ(x)

∫ y

0

ρdy.

(3.16)
µ

µe
= C̃(η)

T

Te
, (w = 1),

(3.17)
U2
e

ψ2
ρeµe

(

C̃fηη

)

η
+

ψx

ψ
Ue ffηη −Uex

(

fη
)2 −

1

ρeUe

dp

dx
= Ueξx

(

fηfξη − fηηfξ
)

,

(3.18)

U2
e

ψ2
Heρeµe

(

C̃gη

)

η
+

ψx

ψ
HePrfgη − PrHex fηg + (Pr − 1)

U3
e

ψ2
ρeµe

(

C̃fηfηη

)

η

= Heξx
(

fηgξ − fξ gη
)

.
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We assumed that C̃ is constant. The flow is assumed to be similar, i.e., f = f (η), 
g = g(η) = H/He (He is constant) such that the RHS of the momentum and energy 
equation becomes zero. In addition, we assumed that the total enthalpy at the boundary 
layer edge is constant, i.e., Hex = 0. Since He = he + 0.5U2

e , both the static enthalpy and 
the velocity can vary across the edge of the boundary layer. In the momentum equa-
tion, we replace the pressure gradient term by using Euler’s equation at the edge of the 
boundary layer, i.e.,

Using Eq. (3.19) for the momentum equation, together with the stagnation enthalpy, the 
momentum and energy equations become respectively:

where, the prime denotes ordinary differentiation with respect to η. The similarity condi-
tions from Eqs. (3.20)–(3.21) are

Integrating Eq. (3.22) results in:

Substituting Eq. (3.25) into (3.15) results in:

Since ξ = ξ(x) and

(3.19)Ux = −
1

ρeUe

dp

dx
.

(3.20)f ′′′ +
ψψx

C̃ρeµeUe

ff ′ +
ψ2Uex

C̃ρeµeU2
e

(

ρe

ρ
−

(

f ′
)2

)

= 0,

(3.21)g ′′ +
ψψx

C̃ρeµeUe

Prg ′ = (1− Pr)
U2
e

He

(

f ′f ′′
)′
,

(3.22)
ψψx

C̃ρeµeUe

= 1,

(3.23)
ψ2Uex

C̃ρeµeU2
e

(

ρe

ρ
−

(

f ′
)2

)

= function of η only,

(3.24)
U2
e

He
= 1.

(3.25)ψ(x) =

√

2

∫ x

0

ρeµeUedx ≡
√

2ξ(x).

(3.26)η =
Ue

√

2
∫ x
0
C̃ρeµeUedx

∫ y

0

ρdy.

(3.27)ξ =
∫ x

0

C̃ρeµeUedx,
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then Eq. (3.26) becomes

The transformation given in Eqs. (3.27)–(3.28) is called the Illingworth-levy 
transformation.

For the case of He = const, using the definition of g(η), and since u/Ue = f ′ and with 
the added assumption that the pressure is constant across the boundary layer, the final 
form of the momentum Eq. (3.20) and energy Eq. (3.21) are:

The next step is to transform the spray Eq. (3.6) under the above assumptions, using the 
stream function, and the Illingworth-levy transformation. For this purpose it is neces-
sary to multiply the spray equation by the density ρ.

Using the transformation (3.27)–(3.28) we obtain

Next, using the transformation (3.27)–(3.28) we obtain

Substituting Eq. (3.33) into (3.32) and using the relation Qα(η) = Qα/Qα,w(s), according 
to [1], the spray Eq. (3.32) transforms to:

where

The governing equations of the model that describe the vaporization of polydisperse fuel 
spray in a laminar boundary layer flow, in terms of probability density function, are Eqs. 
(3.29)–(3.30) and (3.34), with the boundary conditions at the surface for similar solu-
tions to be exist are:

(3.28)η =
Ue√
2ξ

∫ y

0

ρdy.

(3.29)f ′′′ + ff ′′ +
2ξ

Ue

dUe

dξ

(

1+
(κ − 1)M2

e

2

)

(

g −
(

f ′
)2
)

= 0,

(3.30)g ′′ + Prfg ′ =
2(κ − 1)M2

e

2+ (κ − 1)M2
e

(1− Pr)
(

f ′f ′′
)′
.

(3.31)
∂�

∂y

∂Qα

∂x
−

∂�

∂x

∂Qα

∂y
=

ρD

UeL

∂2Qα

∂y2
−

ρLB

Ue
Qα .

(3.32)
∂�

∂η

∂Qα

∂ξ
−

∂�

∂ξ

∂Qα

∂η
=

ρ2D

C̃µeρeUeL
√
sξ

∂2Qα

∂η2
−

LB
√
2ξ

C̃U3
e µeρe

Qα .

(3.33)� =
√

2sξ f .

(3.34)�Q′′
α +�fQ′

α =
(

�f ′ + Ŵ
)

Qα ,

(3.35)� =
ρ2D

C̃µeρeUeL
√
2ξ

, � =
dQα,w

dξ

√

2ξ , Ŵ =
LB

√
2ξ

C̃U3
e µeρe

, � =
1√
2ξ

.

(3.36)at η = 0 : f = 0, f ′ = 0, Qα,w = 1.
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The boundary conditions related to the energy equation are

The outer boundary conditions are

That is, the wall temperature is assumed to be known, and the initial size distribution of 
the droplets produced by the atomizer is known.

Discussion
The purpose of the atomization is to disperse the droplets into the oxidizer and to 
increase the surface area of the droplets. This process of atomization enhanced the heat 
and mass transfer during the combustion processes.

In our analysis we compared among three different initial size distributions of droplets: 
Non symmetrical, Symmetrical and Uniform distribution. Each distribution refers to the 
surface area of the droplets. In order to compare our continuous model to the sectional 
approximation model, we have taken into account five sections, as can be seen in Table 1.

Figures 1, 2 present the downstream changes in the surface area distribution of drop-
lets for continuous and sectional approximation models, as compared with the experi-
mental results, correspondingly. At the beginning of the vaporization process the 
sectional approach more closely modeled the experimental results (for small droplets). 
For large droplets the continuous approach more closely modeled the experimental 
results. Our results show a substantial decrease in the surface are of the droplets both in 
the higher section and in the lower section.

According to Figs. 3, 4 for the non symmetrical initial distribution, as the free stream 
temperature increases, the droplets boundary layer thickness is decreased both for the sec-
tional approximation and for the continuous model correspondingly. The same conclusion 
can be drawn for the symmetrical initial distribution and for the uniform initial distribu-
tion, see Figs. 5, 6 and 7, 8 correspondingly. From these figures one can see that the surface 
area of the droplets in section V is decreased significantly compared to section I.

Comparison with experimental results

In our analysis we compared our results with experimental data given in Ref. [17]. In 
the experimental data the liquid phase (the fuel) sprayed in a high pressure environ-
ment decomposed and then form a polydisperse fuel spray of droplets. In our notations 

(3.37)at η = 0 : g = const = gw , or g ′ = 0.

(3.38)at η → ∞ : f ′ → 1, g → 1, Qα,w → 0.

Table 1 Initial surface area distribution

Experimental data: ρ = 1.225
3  kg/m3, T∞ = 500K − 900K , D = 4.922

−5 m2/s, E(T )
E(300K)

= 1+ 7.4233
−7(T∞ − 300)2.7548 ([18]), 

T∞ = 500K − 900K , B = 3
2/s, C = 1256 J/kg/K, 102 < Re < 10

5, L = 9.98 cm, M = 0.7011. Pr=0.7, [19] Initial surface area 
distribution.

Section number Droplet diameter (μm) Uniform Symmetrical Nonsymmetrical

I <1 0.2 0.5 0.48

II 1–3 0.2 0.8 0.66

III 3–5 0.2 0.6 0.32

IV 5–6 0.2 0.8 0.56

V 6–9 0.2 0.5 0.63
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the distribution function for the droplets size is n(2r, t) and in dimensionless form is as 
follows:

(4.1)n(2r, τ ) =
81π2

128
r[τ (1− ζ τ 2)+ r2]e

9π

16r2
0

[τ(1−ζ τ 2)+r2]
,

Fig. 1 Comparison between the continuous model with the experimental results for the downstream 
changes in the surface area distribution of droplets for different values of η.

Fig. 2 Comparison between the sectional approximation model with the experimental results for the down-
stream changes in the surface area distribution of droplets for different values of η.
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where τ is the dimensionless time, r0 dimensionless initial radius and ζ constant ineffi-
ciency parameter (for more details refer to [17]). As presented in Figs. 1, 2 the evapora-
tion rate decreases gradually rather than abruptly (the decreases of the droplet moment 
Q) (this results agree with the observation in [17]). In order to compare quantitatively our 
results with experimental results we should re-normalized our initial droplet radius to the 
initial droplet radius as presented in [17]. In Fig. 9 we presented the relative error of our 
results compared to experimental data for the same initial dimensionless droplet radius. 
The expression for the relative error given by (ntheoretical − nexperimental)/nexperimental. For 
example, at time = 0.6 the relative error between the continuous model (non-symmetri-
cal PDF) and the sectional approach model is 5 %.

Fig. 3 Surface area distribution of droplets as a function of the distance from the wall, for an axial position 
s̄ = 1 for the sectional approximation model for different values of η.

Fig. 4 Surface area distribution of droplets as a function of the distance from the wall, for an axial position 
s̄ = 1 for the continuous model for different values of η.
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Conclusion
In this research paper we developed a model that describe the evaporation process of 
multi-size (polydisperse) of fuel droplets in a laminar boundary layer flow. We rewrite 
the discrete model that describe this process and based on the well-known the sectional 
approach model. In order to analyze the model we transfer the discrete model to a con-
tinuous one using a probability density function, i.e., the size distribution of the spray 
droplets, which is a polydisperse spray droplets, described by a four moments model 

Fig. 5 Surface area distribution of droplets as a functionggg of the distance from the wall, for an axial posi-
tion s̄ = 1 for the sectional approximation model for different values of η.

Fig. 6 Surface area distribution of droplets as a function of the distance from the wall, for an axial position 
s̄ = 1 for the continuous model for different values of η.
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using the quantity Qi. The analysis of the spray restricted to a no slip condition between 
the droplets and the boundary layer flow filed. The physical model includes a system of 
five partial differential equations. We applied the Lees-Dorodnitsyn similarity transfor-
mation and the system of the governing equations transform to an ordinary differential 
equation. This transformation enable one to apply an asymptotic methods and even an 
analytical methods such as the singular perturbed homotopy analysis method (SPHAM). 
Our future work is to apply the SPHAM to the continuous model and obtain an analyti-
cal solution for the physical dynamical variables of the system.

We compared the theoretical results to the experimental data (in contrast to [1]), as 
can be seen in Table  2. Additionally, we have rewritten the model that was presented 

Fig. 7 Surface area distribution of droplets as a function of the distance from the wall, for an axial position 
s̄ = 1 for the sectional approximation model for different values of η.

Fig. 8 Surface area distribution of droplets as a function of the distance from the wall, for an axial position 
s̄ = 1 for the continuous model for different values of η.
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in [1] in a continuous form. This reformulation not only reduced the complexity of the 
model but also reduced the computation time, which is very important from a practi-
cal point of view. This change is particularly evident in the spray equation, which in our 
model is merely one equation!. In conclusion, we demonstrate in this paper how the sur-
face area of the droplets in polydisperse fuel spray has been changed as a function of the 
temperature and the distance from the wall.

Nomenclature
B  evaporation coefficient
C  specific heat capacity
D  diffusion coefficient of droplets
Ei  frequency of the molecule evaporation from an i-mer droplet
h  enthalpy
L  characteristic longitudinal direction
M  Mach number
n  number of droplets per unit volume
p  pressure

Fig. 9 Relative error. Qualitative comparison between the continuous model using non-symmetrical PDF 
and experimental data in percent.

Table 2 Section number and  sectional coefficients normalized by E(T), the surface reces-
sion rate of a 65 µm droplets

Section number Droplet diameter (µm) C j/E(T) B j,j+1/E(T)

I <1 0.454 0.0692

II 1–3 0.987 0.0018

III 3–5 0.657 0.0875

IV 5–6 0.342 0.0787

V 6–9 0.566 –
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P  probability density function
Pr  Prandtl number
Q  droplet moment
r  radius of drop
Re  Reynolds number
u  velocity in the x direction
U  longitudinal free-stream velocity
v  velocity in the y direction
x  direction along the surface creating the boundary layer
y  direction normal to the surface

Greek symbols
α  0, 1, 2, 3
γ  4 0, 1 or 2/3
κ  specific heat ratio
ρ  density
µ  dynamic viscosity
ν  kinematic viscosity

Subscripts
e  the edge of the boundary
p  at constant pressure
v  at constant volume
w  properties at the wall surface
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